Summary
Traditional engineering models known as Activated Sludge Model (ASM) are commonly used for operation, design, and optimization of wastewater treatment plants. ASM predict microbial growth with simulation and calibration of model parameters which are bound to a range of experimental conditions. Recently, Microbial Transition State (MTS) approach was proposed which is a statistical-physics based theory of microbial growth linking thermodynamic balances and growth rates. A growth equation was derived from these first principles, which links a flux (the growth of microbes) to a force, i.e. the Gibbs free potential energy density in medium contained in randomly distributed substrate molecules. MTS has not been fully verified with experimental data on mixed microbial cultures such as sustained in wastewater treatment systems. As the theory is developed for describing standard microbial growth, conditions such as inhibition of growth by any pollutant compound has not been considered/applied in real systems. The aim of the research is to investigate growth kinetics of two different nitrifying bacteria individually (Ammonia and Nitrite oxidizers) with MTS modeling approach and identify nitirification growth kinetics. Inhibition of bacterial growth with different types of inhibitors will also be investigated in order to evaluate and verify application of MTS model for different guilds in mixed microbial cultures under different environmental conditions. The outcomes of the study will contribute to understanding and control of microbial growth processes in engineered and natural treatment systems. Identification of inhibition kinetics will be used for mitigation of pollution generated from industrial processes as well as theoretical development of MTS theory to be applied in more complex biological process applications. The project is an intersection of environmental engineering, molecular biology, and modeling disciplines which will contribute Green Deal Strategy of EU.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101090315 |
Start date: | 01-01-2023 |
End date: | 31-12-2024 |
Total budget - Public funding: | - 148 478,00 Euro |
Cordis data
Original description
Traditional engineering models known as Activated Sludge Model (ASM) are commonly used for operation, design, and optimization of wastewater treatment plants. ASM predict microbial growth with simulation and calibration of model parameters which are bound to a range of experimental conditions. Recently, Microbial Transition State (MTS) approach was proposed which is a statistical-physics based theory of microbial growth linking thermodynamic balances and growth rates. A growth equation was derived from these first principles, which links a flux (the growth of microbes) to a force, i.e. the Gibbs free potential energy density in medium contained in randomly distributed substrate molecules. MTS has not been fully verified with experimental data on mixed microbial cultures such as sustained in wastewater treatment systems. As the theory is developed for describing standard microbial growth, conditions such as inhibition of growth by any pollutant compound has not been considered/applied in real systems. The aim of the research is to investigate growth kinetics of two different nitrifying bacteria individually (Ammonia and Nitrite oxidizers) with MTS modeling approach and identify nitirification growth kinetics. Inhibition of bacterial growth with different types of inhibitors will also be investigated in order to evaluate and verify application of MTS model for different guilds in mixed microbial cultures under different environmental conditions. The outcomes of the study will contribute to understanding and control of microbial growth processes in engineered and natural treatment systems. Identification of inhibition kinetics will be used for mitigation of pollution generated from industrial processes as well as theoretical development of MTS theory to be applied in more complex biological process applications. The project is an intersection of environmental engineering, molecular biology, and modeling disciplines which will contribute Green Deal Strategy of EU.Status
SIGNEDCall topic
HORIZON-WIDERA-2022-TALENTS-02-01Update Date
09-02-2023
Geographical location(s)
Structured mapping
Unfold all
/
Fold all