Summary
PilotSOEL will develop and demonstrate SOEL cells and stacks for high-current operation, applying advanced scalable manufacturing processes to enable SOEL production at much lower cost than for today’s state-of-the-art (SoA) products.
The project will focus on innovative upscalable and low-cost SOEL component manufacturing processes with reduced use of Critical Raw Materials (CRM) and waste recycling in the cell production processes, and increase the degree of automation in the stack assembly to reduce manufacturing cost.
The project will develop a novel environmentally friendly water-based tape casting process with a reduced number of process steps for half-cell production. Innovative thin protective barrier layers deposited by ALD and PVD, together with microstructural cell optimisation, will reduce the cell resistance, improving the cell performance and durability at high current operation. The dense and thin coating made by PVD will improve the oxidization resistance of the interconnector, allowing the use of cheaper alloys, and ensuring a long stack lifetime. A life-cycle assessment (LCA) and a techno-economic analysis (TEA) will be performed to benchmark the developed processes in PilotSOEL with the SoA SOEL production processes. The project is aiming to improve the SOEL processing MRL from MRL 4 at the beginning of the project to at least MRL 5 at the end of the project.
The PilotSOEL consortium is formed by experienced industries and research partners with complementary competences and well-defined roles in the project, including cell and cell component development (DTU, ELCAS, Naco, Beneq), interconnector coating development (Naco, ELCOY), stack development and stack assembly process automation (ELCOY), performance validation (DTU), and finally LCA/TEA (UL) of SOEL manufacture. PilotSOEL will ensure the competitive position of key European industries/SMEs in the rapidly growing world market for electrolysis technology, taking the leadership in this area.
The project will focus on innovative upscalable and low-cost SOEL component manufacturing processes with reduced use of Critical Raw Materials (CRM) and waste recycling in the cell production processes, and increase the degree of automation in the stack assembly to reduce manufacturing cost.
The project will develop a novel environmentally friendly water-based tape casting process with a reduced number of process steps for half-cell production. Innovative thin protective barrier layers deposited by ALD and PVD, together with microstructural cell optimisation, will reduce the cell resistance, improving the cell performance and durability at high current operation. The dense and thin coating made by PVD will improve the oxidization resistance of the interconnector, allowing the use of cheaper alloys, and ensuring a long stack lifetime. A life-cycle assessment (LCA) and a techno-economic analysis (TEA) will be performed to benchmark the developed processes in PilotSOEL with the SoA SOEL production processes. The project is aiming to improve the SOEL processing MRL from MRL 4 at the beginning of the project to at least MRL 5 at the end of the project.
The PilotSOEL consortium is formed by experienced industries and research partners with complementary competences and well-defined roles in the project, including cell and cell component development (DTU, ELCAS, Naco, Beneq), interconnector coating development (Naco, ELCOY), stack development and stack assembly process automation (ELCOY), performance validation (DTU), and finally LCA/TEA (UL) of SOEL manufacture. PilotSOEL will ensure the competitive position of key European industries/SMEs in the rapidly growing world market for electrolysis technology, taking the leadership in this area.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101112026 |
Start date: | 01-06-2023 |
End date: | 31-05-2026 |
Total budget - Public funding: | 2 000 000,00 Euro - 2 000 000,00 Euro |
Cordis data
Original description
PilotSOEL will develop and demonstrate SOEL cells and stacks for high-current operation, applying advanced scalable manufacturing processes to enable SOEL production at much lower cost than for today’s state-of-the-art (SoA) products.The project will focus on innovative upscalable and low-cost SOEL component manufacturing processes with reduced use of Critical Raw Materials (CRM) and waste recycling in the cell production processes, and increase the degree of automation in the stack assembly to reduce manufacturing cost.
The project will develop a novel environmentally friendly water-based tape casting process with a reduced number of process steps for half-cell production. Innovative thin protective barrier layers deposited by ALD and PVD, together with microstructural cell optimisation, will reduce the cell resistance, improving the cell performance and durability at high current operation. The dense and thin coating made by PVD will improve the oxidization resistance of the interconnector, allowing the use of cheaper alloys, and ensuring a long stack lifetime. A life-cycle assessment (LCA) and a techno-economic analysis (TEA) will be performed to benchmark the developed processes in PilotSOEL with the SoA SOEL production processes. The project is aiming to improve the SOEL processing MRL from MRL 4 at the beginning of the project to at least MRL 5 at the end of the project.
The PilotSOEL consortium is formed by experienced industries and research partners with complementary competences and well-defined roles in the project, including cell and cell component development (DTU, ELCAS, Naco, Beneq), interconnector coating development (Naco, ELCOY), stack development and stack assembly process automation (ELCOY), performance validation (DTU), and finally LCA/TEA (UL) of SOEL manufacture. PilotSOEL will ensure the competitive position of key European industries/SMEs in the rapidly growing world market for electrolysis technology, taking the leadership in this area.
Status
SIGNEDCall topic
HORIZON-JTI-CLEANH2-2022-01-04Update Date
31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all