Summary
"Soft robotics has become one of the fastest growing fields over the last decade, and the development of technologies related to the associated modelling, sensing, actuation and control challenges has flourished as part of the field’s impetus. Soft robots have been demonstrated in diverse applications such as wearable devices, mobile or locomotive robots, as well as soft manipulators. Soft lower extremity exoskeletons (“soft wearable robotics"" (SWRs)) are one of the most challenging research topics, and require multidisciplinary approaches involving diverse fields such as neuroscience, biomechanics, robot control, ergonomics and other fields.
SWAG aims to explore a fundamentally new approach to engineering soft structures that omit fully rigid materials for inflatable ones made from high-strength fabrics and films when manufacturing human-assistive exoskeletal devices that target strain-prone segments of the human body (i.e. lower body and core). Such soft wearable adaptive garments with actuation capabilities offer higher variable stiffness and force-to-weight ratios compared to other existing methods, and simultaneously entirely conform to each joint’s intricate kinematics. Because of this, new design approaches can be used as building blocks to realise complete assistance for multi-degree-of-freedom joints, such as the ankle or hip, by adapting flexible and conforming motions achieved by continuum robot designs.
SWAG’s advances will be demonstrated in 4 different application scenarios. The project brings together 13 partners from 5 EU countries and the UK. The partners consist of an interdisciplinary combination of leading academics with very strong track records in their respective fields. They are supported by RTOs with demonstrated capabilities of developing and validating application-driven solutions, as well as two commercial partners aiming to lead the exploitation of SWAG’s outcomes."
SWAG aims to explore a fundamentally new approach to engineering soft structures that omit fully rigid materials for inflatable ones made from high-strength fabrics and films when manufacturing human-assistive exoskeletal devices that target strain-prone segments of the human body (i.e. lower body and core). Such soft wearable adaptive garments with actuation capabilities offer higher variable stiffness and force-to-weight ratios compared to other existing methods, and simultaneously entirely conform to each joint’s intricate kinematics. Because of this, new design approaches can be used as building blocks to realise complete assistance for multi-degree-of-freedom joints, such as the ankle or hip, by adapting flexible and conforming motions achieved by continuum robot designs.
SWAG’s advances will be demonstrated in 4 different application scenarios. The project brings together 13 partners from 5 EU countries and the UK. The partners consist of an interdisciplinary combination of leading academics with very strong track records in their respective fields. They are supported by RTOs with demonstrated capabilities of developing and validating application-driven solutions, as well as two commercial partners aiming to lead the exploitation of SWAG’s outcomes."
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101120408 |
Start date: | 01-11-2023 |
End date: | 31-10-2027 |
Total budget - Public funding: | 5 366 195,00 Euro - 5 366 195,00 Euro |
Cordis data
Original description
"Soft robotics has become one of the fastest growing fields over the last decade, and the development of technologies related to the associated modelling, sensing, actuation and control challenges has flourished as part of the field’s impetus. Soft robots have been demonstrated in diverse applications such as wearable devices, mobile or locomotive robots, as well as soft manipulators. Soft lower extremity exoskeletons (“soft wearable robotics"" (SWRs)) are one of the most challenging research topics, and require multidisciplinary approaches involving diverse fields such as neuroscience, biomechanics, robot control, ergonomics and other fields.SWAG aims to explore a fundamentally new approach to engineering soft structures that omit fully rigid materials for inflatable ones made from high-strength fabrics and films when manufacturing human-assistive exoskeletal devices that target strain-prone segments of the human body (i.e. lower body and core). Such soft wearable adaptive garments with actuation capabilities offer higher variable stiffness and force-to-weight ratios compared to other existing methods, and simultaneously entirely conform to each joint’s intricate kinematics. Because of this, new design approaches can be used as building blocks to realise complete assistance for multi-degree-of-freedom joints, such as the ankle or hip, by adapting flexible and conforming motions achieved by continuum robot designs.
SWAG’s advances will be demonstrated in 4 different application scenarios. The project brings together 13 partners from 5 EU countries and the UK. The partners consist of an interdisciplinary combination of leading academics with very strong track records in their respective fields. They are supported by RTOs with demonstrated capabilities of developing and validating application-driven solutions, as well as two commercial partners aiming to lead the exploitation of SWAG’s outcomes."
Status
SIGNEDCall topic
HORIZON-CL4-2022-DIGITAL-EMERGING-02-06Update Date
31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all