BOOSTER | BOOSTING DROUGHT TOLERANCE IN KEY CEREALS IN THE ERA OF CLIMATE CHANGE

Summary
Prolonged drought due to climate change has a severe impact on agriculture, requiring measures to secure yield stability under water-shortage conditions. This project aims to be a BOOSTER for developing innovative and sustainable strategies to create climate resilient and drought tolerant cereals. Two synergistic strategies will be implemented to achieve this goal. Firstly, a new approach will identify genomic variants in regulatory regions functionally associated with drought tolerance. Novel regulatory elements underlying resilience will inform efficient breeding efforts to create new drought tolerant cereal varieties. Secondly, novel seaweed extracts and microbial biostimulants will be developed as an eco-friendly approach for improving drought resilience. The two strategies will be tested in two cereals with different responsiveness to drought: European maize and Ethiopian teff, a cereal with high genetic similarity to the desiccation tolerant Eragrostis nindensis. BOOSTER will improve drought tolerance in both maize and teff, while simultaneously exploring the potential for transferring species-specific drought responsive features. By exploiting natural genetic variation to achieve drought tolerant genotypes and by developing biostimulants derived from living organisms, BOOSTER will take advantage of the already available natural resources to steer our agriculture towards novel drought tolerant varieties. Importantly, BOOSTER approaches and results are transferable to other crops. A tailored communication/dissemination strategy and a stakeholders’ engagement plan will ensure the expected outcomes and impacts. The project will produce increased maize- and teff-derived biomass resources under harsh drought conditions, will lower irrigation requirement, will strengthen competitiveness of European and African agri-food industry, and will provide concrete examples for improving public awareness about a sustainable use of bio-based technologies.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101081770
Start date: 01-05-2023
End date: 30-04-2027
Total budget - Public funding: 4 999 122,25 Euro - 4 999 122,00 Euro
Cordis data

Original description

Prolonged drought due to climate change has a severe impact on agriculture, requiring measures to secure yield stability under water-shortage conditions. This project aims to be a BOOSTER for developing innovative and sustainable strategies to create climate resilient and drought tolerant cereals. Two synergistic strategies will be implemented to achieve this goal. Firstly, a new approach will identify genomic variants in regulatory regions functionally associated with drought tolerance. Novel regulatory elements underlying resilience will inform efficient breeding efforts to create new drought tolerant cereal varieties. Secondly, novel seaweed extracts and microbial biostimulants will be developed as an eco-friendly approach for improving drought resilience. The two strategies will be tested in two cereals with different responsiveness to drought: European maize and Ethiopian teff, a cereal with high genetic similarity to the desiccation tolerant Eragrostis nindensis. BOOSTER will improve drought tolerance in both maize and teff, while simultaneously exploring the potential for transferring species-specific drought responsive features. By exploiting natural genetic variation to achieve drought tolerant genotypes and by developing biostimulants derived from living organisms, BOOSTER will take advantage of the already available natural resources to steer our agriculture towards novel drought tolerant varieties. Importantly, BOOSTER approaches and results are transferable to other crops. A tailored communication/dissemination strategy and a stakeholders’ engagement plan will ensure the expected outcomes and impacts. The project will produce increased maize- and teff-derived biomass resources under harsh drought conditions, will lower irrigation requirement, will strengthen competitiveness of European and African agri-food industry, and will provide concrete examples for improving public awareness about a sustainable use of bio-based technologies.

Status

SIGNED

Call topic

HORIZON-CL6-2022-CIRCBIO-02-02-two-stage

Update Date

31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.2 Global Challenges and European Industrial Competitiveness
HORIZON.2.6 Food, Bioeconomy Natural Resources, Agriculture and Environment
HORIZON.2.6.6 Bio-based Innovation Systems in the EU Bioeconomy
HORIZON-CL6-2022-CIRCBIO-02-two-stage
HORIZON-CL6-2022-CIRCBIO-02-02-two-stage Exploring extreme environments: novel adaptation strategies at molecular level for bio-based innovation