DARWIN | Digital Assistants for Reducing Workload & Increasing collaboratioN

Summary
DARWIN ambition and vision is to develop technology enabling AI based level 4 automation for cockpit and flight operation as a key enabler for SPO (Single Pilot Operations) and demonstrate the same (or higher) level of safety with same (or lower) workload as operations with a full crew.
It will bring solutions that will help the market maintain operational efficiency with increased complexity and routing flexibility, which are expected by the emergence of drones and air taxis. The results will support the commercial and operational viability of those new airspace users, even with the forecasted pilot shortage and growing environmental concerns. AI-based automation will come with its own challenges that need to be addressed to keep the high safety standards for the next generation of automation. One of the biggest challenges is to facilitate the cooperation between humans and AI.
The DARWIN project builds upon the available technology base in AI and leverages the partners’ excellent position in the aviation supply chain to address the need for scalable, interconnected, and highly automated eMCO (Extended Minimum Crew Operations) and SPO operation concepts as one of the inherent foundational building blocks of the Digital European Sky (SESAR ATM Master Plan Phase D).
The system will consist of 3 core enabling technology layers: 1) Trustworthy Machine Reasoning Platform will provide capabilities for rule-driven, transparent, and explainable decision aiding or decision making. 2) Human-AI Collaboration layer will be implemented on top of the Reasoning Platform. It will provide collaborative capabilities for the pilot interaction with the adaptive automation and assistants to efficiently keep the human-in-the-loop of the workflow in the eMCO or SPO cockpit with the Level 4 automation. 3) Pilot State and Taskload Monitor will provide data to the collaboration layer and automation to adaptively react. The project will deliver a TRL7 system validated in ops environment.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101114733
Start date: 01-06-2023
End date: 31-05-2026
Total budget - Public funding: 5 163 172,25 Euro - 3 460 077,00 Euro
Cordis data

Original description

DARWIN ambition and vision is to develop technology enabling AI based level 4 automation for cockpit and flight operation as a key enabler for SPO (Single Pilot Operations) and demonstrate the same (or higher) level of safety with same (or lower) workload as operations with a full crew.
It will bring solutions that will help the market maintain operational efficiency with increased complexity and routing flexibility, which are expected by the emergence of drones and air taxis. The results will support the commercial and operational viability of those new airspace users, even with the forecasted pilot shortage and growing environmental concerns. AI-based automation will come with its own challenges that need to be addressed to keep the high safety standards for the next generation of automation. One of the biggest challenges is to facilitate the cooperation between humans and AI.
The DARWIN project builds upon the available technology base in AI and leverages the partners’ excellent position in the aviation supply chain to address the need for scalable, interconnected, and highly automated eMCO (Extended Minimum Crew Operations) and SPO operation concepts as one of the inherent foundational building blocks of the Digital European Sky (SESAR ATM Master Plan Phase D).
The system will consist of 3 core enabling technology layers: 1) Trustworthy Machine Reasoning Platform will provide capabilities for rule-driven, transparent, and explainable decision aiding or decision making. 2) Human-AI Collaboration layer will be implemented on top of the Reasoning Platform. It will provide collaborative capabilities for the pilot interaction with the adaptive automation and assistants to efficiently keep the human-in-the-loop of the workflow in the eMCO or SPO cockpit with the Level 4 automation. 3) Pilot State and Taskload Monitor will provide data to the collaboration layer and automation to adaptively react. The project will deliver a TRL7 system validated in ops environment.

Status

SIGNED

Call topic

HORIZON-SESAR-2022-DES-IR-01-WA5-4

Update Date

31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.2 Global Challenges and European Industrial Competitiveness
HORIZON.2.5 Climate, Energy and Mobility
HORIZON.2.5.0 Cross-cutting call topics
HORIZON-SESAR-2022-DES-IR-01
HORIZON-SESAR-2022-DES-IR-01-WA5-4 Fast Track Innovation and Uptake Artificial Intelligence for Aviation