HYPERSOLVER | Artificial Intelligence controller able to manage Air traffic Control (ATC) and Air Traffic Flow Management (ATFM) within a single framework

Summary
Air Traffic Flow Management (ATFM) is the problem of adjusting the traffic demand in each traffic volume using ATFM measures so that aircraft can be safely separated during the subsequent Air Traffic Control (ATC) process. On the other hand, ATC officers (ATCOs) give different aircraft heading, speed, and flight level change instructions to separate them in flight. Both ATFM and ATC problems have been subject of research during decades, however, all previous works addressed the ATFM and ATC problems independently. The project aims to develop an HyperSolver based on advanced Artificial Intelligent Reinforcement Learning method with continuous reassessment and dynamic updates, i.e. an holistic solver from end-to-end, covering the whole process to manage, density of aircraft, complexity of trajectories, interactions (potential conflict in Dynamic Capacity Balancing timeframe) of trajectories, conflict of trajectories at medium-term and conflict of trajectories at short-term.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101114820
Start date: 01-06-2023
End date: 30-11-2025
Total budget - Public funding: 1 291 438,75 Euro - 759 200,00 Euro
Cordis data

Original description

Air Traffic Flow Management (ATFM) is the problem of adjusting the traffic demand in each traffic volume using ATFM measures so that aircraft can be safely separated during the subsequent Air Traffic Control (ATC) process. On the other hand, ATC officers (ATCOs) give different aircraft heading, speed, and flight level change instructions to separate them in flight. Both ATFM and ATC problems have been subject of research during decades, however, all previous works addressed the ATFM and ATC problems independently. The project aims to develop an HyperSolver based on advanced Artificial Intelligent Reinforcement Learning method with continuous reassessment and dynamic updates, i.e. an holistic solver from end-to-end, covering the whole process to manage, density of aircraft, complexity of trajectories, interactions (potential conflict in Dynamic Capacity Balancing timeframe) of trajectories, conflict of trajectories at medium-term and conflict of trajectories at short-term.

Status

SIGNED

Call topic

HORIZON-SESAR-2022-DES-ER-01-WA1-1

Update Date

31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.2 Global Challenges and European Industrial Competitiveness
HORIZON.2.5 Climate, Energy and Mobility
HORIZON.2.5.0 Cross-cutting call topics
HORIZON-SESAR-2022-DES-ER-01
HORIZON-SESAR-2022-DES-ER-01-WA1-1 Fundamental Science and Outreach for Connected and Automated ATM