STRATIF-AI | Continuous stratification for improved prevention, treatment, and rehabilitation of stroke patients using digital twins and AI

Summary
State-of-the-art stratification today is based on machine-learning (ML) algorithms, trained on large cohort data. This has two main limitations: a) such ML-models cannot use all the variety of different data that is generated about a patient, b) stratification is thus only done intermittently, implying out-dated and sub-optimal care decisions. To remedy this, we herein present a new concept and technology - continuous stratification, using our new STRATIF-AI platform. In continuous stratification, all data generated about a patient is cumulatively stored in a Personal Data Vault, controlled by the patient. These personal data continuously updates our world-unique digital twins. The unique potential with our twins comes from the hybrid architecture, combining mechanistic, multi-scale, and multi-organ models with ML and bioinformatics. This allows us to simulate patient-specific responses to changes in diet, exercise, and certain medications, and see changes on both an intracellular, organ, and whole-body level, ranging from seconds to years. We also combine semantic harmonization with federated learning to securely re-train the various sub-models, when new data become available in one of the cohort databases. In this project, we will for the first time use this cutting-edge technology to connect a series of apps that together covers an entire patient journey. Using 6 new clinical studies, involving 8 new partner hospitals, we will both refine and validate the models, and demonstrate how the same digital twin can follow a patient across different apps, covering all phases of stroke: from prevention, to acute treatment, and rehabilitation. Our scalable platform for continuous stratification forms the foundation for a new interconnected and patient-centric healthcare system.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101080875
Start date: 01-05-2023
End date: 30-04-2027
Total budget - Public funding: 5 698 475,00 Euro - 5 698 475,00 Euro
Cordis data

Original description

State-of-the-art stratification today is based on machine-learning (ML) algorithms, trained on large cohort data. This has two main limitations: a) such ML-models cannot use all the variety of different data that is generated about a patient, b) stratification is thus only done intermittently, implying out-dated and sub-optimal care decisions. To remedy this, we herein present a new concept and technology - continuous stratification, using our new STRATIF-AI platform. In continuous stratification, all data generated about a patient is cumulatively stored in a Personal Data Vault, controlled by the patient. These personal data continuously updates our world-unique digital twins. The unique potential with our twins comes from the hybrid architecture, combining mechanistic, multi-scale, and multi-organ models with ML and bioinformatics. This allows us to simulate patient-specific responses to changes in diet, exercise, and certain medications, and see changes on both an intracellular, organ, and whole-body level, ranging from seconds to years. We also combine semantic harmonization with federated learning to securely re-train the various sub-models, when new data become available in one of the cohort databases. In this project, we will for the first time use this cutting-edge technology to connect a series of apps that together covers an entire patient journey. Using 6 new clinical studies, involving 8 new partner hospitals, we will both refine and validate the models, and demonstrate how the same digital twin can follow a patient across different apps, covering all phases of stroke: from prevention, to acute treatment, and rehabilitation. Our scalable platform for continuous stratification forms the foundation for a new interconnected and patient-centric healthcare system.

Status

SIGNED

Call topic

HORIZON-HLTH-2022-TOOL-12-01-two-stage

Update Date

31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.2 Global Challenges and European Industrial Competitiveness
HORIZON.2.1 Health
HORIZON.2.1.0 Cross-cutting call topics
HORIZON-HLTH-2022-TOOL-12-two-stage
HORIZON-HLTH-2022-TOOL-12-01-two-stage Computational models for new patient stratification strategies
HORIZON.2.1.5 Tools, Technologies and Digital Solutions for Health and Care, including personalised medicine
HORIZON-HLTH-2022-TOOL-12-two-stage
HORIZON-HLTH-2022-TOOL-12-01-two-stage Computational models for new patient stratification strategies