CANDHy | Compatibility Assessment of Non-steel metallic Distribution gas grid materials with Hydrogen

Summary
Green hydrogen is gaining moment across Europe as feedstock, fuel or energy carrier and storage, as solid actions are needed to reach carbon neutrality by 2050. Hydrogen has many possible applications across industry, transport, energy and building sectors and, therefore, local gas grids across Europe are working hard to get ready for its transport. The realization of the prospects of delivering H2/NG admixtures or even 100 % H2 by existing gas distribution grids exacerbates the problem of pipe integrity due to the well-known negative impact of hydrogen on the mechanical properties of metals.
Most projects assessing safe hydrogen compatibility with natural gas distribution grids (i.e. H21, HydePloy,etc.) have performed experiments to study the leakage ratio, emission potential and explosion severity of vintage components. However, long-term material integrity assessment replicating distribution grid operating conditions in testing platforms is still necessary. CANDHy will allow the possibility of testing relevant metallic materials, different from the well-studied steels, with a methodology involving simultaneous test in independent R&D platforms with a common methodology. This will allow to obtain trustful and reproducible results about hydrogen tolerance of materials that have not been considered in previous research but that are an essential part in in low-pressure gas grids.
CANDHy project will enable hydrogen distribution in low pressure gas grids by consolidated and exhaustive scientific data, coupled with harmonized guidelines for non-steel metallic grid materials. At least five material grades of different families (such as cast iron, copper, brass, lead, aluminium), both new and vintage, will be fully documented, and the results will be publicly available for all stakeholders in a continuously updated database. Mechanical tests will base on static and dynamic conditions to assess hydrogen sensitivity following the most relevant current and updated standards
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101111893
Start date: 01-09-2023
End date: 31-08-2026
Total budget - Public funding: 2 607 481,25 Euro - 2 607 481,00 Euro
Cordis data

Original description

Green hydrogen is gaining moment across Europe as feedstock, fuel or energy carrier and storage, as solid actions are needed to reach carbon neutrality by 2050. Hydrogen has many possible applications across industry, transport, energy and building sectors and, therefore, local gas grids across Europe are working hard to get ready for its transport. The realization of the prospects of delivering H2/NG admixtures or even 100 % H2 by existing gas distribution grids exacerbates the problem of pipe integrity due to the well-known negative impact of hydrogen on the mechanical properties of metals.
Most projects assessing safe hydrogen compatibility with natural gas distribution grids (i.e. H21, HydePloy,etc.) have performed experiments to study the leakage ratio, emission potential and explosion severity of vintage components. However, long-term material integrity assessment replicating distribution grid operating conditions in testing platforms is still necessary. CANDHy will allow the possibility of testing relevant metallic materials, different from the well-studied steels, with a methodology involving simultaneous test in independent R&D platforms with a common methodology. This will allow to obtain trustful and reproducible results about hydrogen tolerance of materials that have not been considered in previous research but that are an essential part in in low-pressure gas grids.
CANDHy project will enable hydrogen distribution in low pressure gas grids by consolidated and exhaustive scientific data, coupled with harmonized guidelines for non-steel metallic grid materials. At least five material grades of different families (such as cast iron, copper, brass, lead, aluminium), both new and vintage, will be fully documented, and the results will be publicly available for all stakeholders in a continuously updated database. Mechanical tests will base on static and dynamic conditions to assess hydrogen sensitivity following the most relevant current and updated standards

Status

SIGNED

Call topic

HORIZON-JTI-CLEANH2-2022-02-01

Update Date

31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Clean Hydrogen Partnership
Clean Hydrogen Partnership Call 2022
HORIZON-JTI-CLEANH2-2022-02-01 Compatibility of Distribution non-steel metallic gas grid materials with hydrogen
Horizon Europe
HORIZON.2 Global Challenges and European Industrial Competitiveness
HORIZON.2.5 Climate, Energy and Mobility
HORIZON.2.5.0 Cross-cutting call topics
HORIZON-JTI-CLEANH2-2022-2
HORIZON-JTI-CLEANH2-2022-02-01 Compatibility of Distribution non-steel metallic gas grid materials with hydrogen