UnLOHCked | UNlocking the potential of LOHCs through the development of KEy sustainable and efficient systems for Dehydrogenation

Summary
By advancing breakthrough research on LOHC technologies, UnLOHCked aims at developing a radically disruptive, versatile and scalable LOHC-dehydrogenation plant. Firstly, highly active and stable catalysts without critical raw materials will be developed for reducing LOHC dehydrogenation at moderate temperatures. Secondly, an SOFC-system will be developed to be thermally integrated with the dehydrogenation process. The heat demand of the dehydrogenation unit will be fully covered by the fuel cell, while generating electric power. The surplus of hydrogen is exported. These innovative systems fully integrated will allow significant increase of overall efficiency (>50%) to hydrogen and electric power production from LOHC.

Three industry partners, HERAEUS, HYGEAR and FRAMATOME, will collaborate with four universities and research centres, the University of Bilbao (Spain), CEA, CNRS-Lyon and North-West University of South Africa to develop scalable prototype system at TRL 5, validating the performance of the technology during at least 500 h. The ambition is to demonstrate the feasibility of a fully CO2-free dehydrogenation process for large-scale production of hydrogen (100-1,000 t H2/d) and electricity with competitive prices (hydrogen carrier delivery cost
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101111964
Start date: 01-06-2023
End date: 31-05-2026
Total budget - Public funding: 2 941 312,75 Euro - 2 941 312,00 Euro
Cordis data

Original description

By advancing breakthrough research on LOHC technologies, UnLOHCked aims at developing a radically disruptive, versatile and scalable LOHC-dehydrogenation plant. Firstly, highly active and stable catalysts without critical raw materials will be developed for reducing LOHC dehydrogenation at moderate temperatures. Secondly, an SOFC-system will be developed to be thermally integrated with the dehydrogenation process. The heat demand of the dehydrogenation unit will be fully covered by the fuel cell, while generating electric power. The surplus of hydrogen is exported. These innovative systems fully integrated will allow significant increase of overall efficiency (>50%) to hydrogen and electric power production from LOHC.

Three industry partners, HERAEUS, HYGEAR and FRAMATOME, will collaborate with four universities and research centres, the University of Bilbao (Spain), CEA, CNRS-Lyon and North-West University of South Africa to develop scalable prototype system at TRL 5, validating the performance of the technology during at least 500 h. The ambition is to demonstrate the feasibility of a fully CO2-free dehydrogenation process for large-scale production of hydrogen (100-1,000 t H2/d) and electricity with competitive prices (hydrogen carrier delivery cost

Status

SIGNED

Call topic

HORIZON-JTI-CLEANH2-2022-02-05

Update Date

31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Clean Hydrogen Partnership
Clean Hydrogen Partnership Call 2022
HORIZON-JTI-CLEANH2-2022-02-05 Efficient system for dehydrogenation of liquid organic hydrogen carriers for application to long distance transportations
Horizon Europe
HORIZON.2 Global Challenges and European Industrial Competitiveness
HORIZON.2.5 Climate, Energy and Mobility
HORIZON.2.5.0 Cross-cutting call topics
HORIZON-JTI-CLEANH2-2022-2
HORIZON-JTI-CLEANH2-2022-02-05 Efficient system for dehydrogenation of liquid organic hydrogen carriers for application to long distance transportations