FASTEST | Fast-track hybrid testing platform for the development of battery systems

Summary
Current methods to evaluate Li-ion batteries safety, performance, reliability and lifetime represent a remarkable resource consumption for the overall battery R&D process. The time or number of tests required, the expensive equipment and a generalised trial-error approach are determining factors, together with a lack of understanding of the complex multi-scale and multi-physics phenomena in the battery system. Besides, testing facilities are operated locally, meaning that data management is handled directly in the facility, and that experimentation is done on one test bench.

The FASTEST project aims develope and validate a fast-track testing platform able to deliver a strategy based on Design of Experiments (DoE) and robust testing results, combining multi-scale and multi-physics virtual and physical testing. This will enable an accelerated battery system R&D and more reliable, safer and long-lasting battery system designs. The project’s prototype of a fast-track hybrid testing platform aims for a new holistic and interconnected approach. From a global test facility perspective, additional services like smart DoE algorithms, virtualised benches, and DT data are incorporated into the daily facility operation to reach a new level of efficiency.

During the project, FASTEST consortium aims to develop up to TRL 6 the platform and its components: the optimal DoE strategies according to three different use cases (automotive, stationary, and off-road); two different cell chemistries, 3b (NMC/Si-C) and 4 solid-state (oxide polymer electrolyte); the development of a complete set of physic-based and data-driven models able to substitute physical characterisation experiments; and the overarching Digital Twin architecture managing the information flows, and the TRL6 proven and integrated prototype of the hybrid testing platform.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101103755
Start date: 01-06-2023
End date: 31-05-2026
Total budget - Public funding: 4 781 008,71 Euro - 4 781 008,00 Euro
Cordis data

Original description

Current methods to evaluate Li-ion batteries safety, performance, reliability and lifetime represent a remarkable resource consumption for the overall battery R&D process. The time or number of tests required, the expensive equipment and a generalised trial-error approach are determining factors, together with a lack of understanding of the complex multi-scale and multi-physics phenomena in the battery system. Besides, testing facilities are operated locally, meaning that data management is handled directly in the facility, and that experimentation is done on one test bench.

The FASTEST project aims develope and validate a fast-track testing platform able to deliver a strategy based on Design of Experiments (DoE) and robust testing results, combining multi-scale and multi-physics virtual and physical testing. This will enable an accelerated battery system R&D and more reliable, safer and long-lasting battery system designs. The project’s prototype of a fast-track hybrid testing platform aims for a new holistic and interconnected approach. From a global test facility perspective, additional services like smart DoE algorithms, virtualised benches, and DT data are incorporated into the daily facility operation to reach a new level of efficiency.

During the project, FASTEST consortium aims to develop up to TRL 6 the platform and its components: the optimal DoE strategies according to three different use cases (automotive, stationary, and off-road); two different cell chemistries, 3b (NMC/Si-C) and 4 solid-state (oxide polymer electrolyte); the development of a complete set of physic-based and data-driven models able to substitute physical characterisation experiments; and the overarching Digital Twin architecture managing the information flows, and the TRL6 proven and integrated prototype of the hybrid testing platform.

Status

SIGNED

Call topic

HORIZON-CL5-2022-D2-01-07

Update Date

31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Batteries Partnership (Batt4EU)
Batt4EU Partnership Call 2022
HORIZON-CL5-2022-D2-01-07 Digitalisation of battery testing, from cell to system level, including lifetime assessment (Batteries Partnership)
Horizon Europe
HORIZON.2 Global Challenges and European Industrial Competitiveness
HORIZON.2.5 Climate, Energy and Mobility
HORIZON.2.5.0 Cross-cutting call topics
HORIZON-CL5-2022-D2-01
HORIZON-CL5-2022-D2-01-07 Digitalisation of battery testing, from cell to system level, including lifetime assessment (Batteries Partnership)
HORIZON.2.5.9 Energy Storage
HORIZON-CL5-2022-D2-01
HORIZON-CL5-2022-D2-01-07 Digitalisation of battery testing, from cell to system level, including lifetime assessment (Batteries Partnership)