ViSS | Viable, safe and sustainable PHBV value chain for food packaging applications

Summary
The European plastics policy highlights bio-based plastics as a key piece to solve the negative impact of fossil-based plastics in the environment. One of the most promising biodegradable biopolymers is the polyhydroxyalkanoates (PHAs) family that can replace these fossil-based plastics in many applications. They are synthesised by microorganisms from renewable carbon sources and exhibit good properties and excellent biodegradability.
In this sense, ViSS project will create a new value chain around PHBV (a copolymer of the PHAs family) as a safe, sustainable, and cost-effective alternative to conventional plastics, especially for short shelf-life food packaging applications due to its excellent properties including flexibility, processability, recyclability and biodegradability in relevant environments (soil, freshwater, marine, industrial composting and home composting). ViSS PHBV will be produced from industrial organic residues and will be formulated and compounded to be transformed and validated as high-performance food packaging, being mechanically recyclable and biodegradable.
Moreover, the whole ViSS circular value chain will be constructed upon a collaborative approach and under safe and sustainable criteria, accomplishing EU regulations and ensuring policy alignment, while the project will deliver and disseminate digital tools and resources which will favour an increased social readiness and marketability of bio-based plastics, fostering a ViSS wide adoption and replication.
Our project gathers 15 partners from 6 European countries leaders in different fields of knowledge, from bioplastic production to validation in real packaging applications.
Adoption of ViSS value chain will produce relevant outcomes as improved functionalities and environmental performances: reduction of 57.8% of CO2 emissions compared to fossil counterparts, yearly saving 11.7 kt of crude oil, recirculating 288.95 kt of biomass, avoiding the use of 2.2 kt of hazardous substances.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101081931
Start date: 01-09-2023
End date: 31-08-2027
Total budget - Public funding: 6 448 921,25 Euro - 5 476 984,00 Euro
Cordis data

Original description

The European plastics policy highlights bio-based plastics as a key piece to solve the negative impact of fossil-based plastics in the environment. One of the most promising biodegradable biopolymers is the polyhydroxyalkanoates (PHAs) family that can replace these fossil-based plastics in many applications. They are synthesised by microorganisms from renewable carbon sources and exhibit good properties and excellent biodegradability.
In this sense, ViSS project will create a new value chain around PHBV (a copolymer of the PHAs family) as a safe, sustainable, and cost-effective alternative to conventional plastics, especially for short shelf-life food packaging applications due to its excellent properties including flexibility, processability, recyclability and biodegradability in relevant environments (soil, freshwater, marine, industrial composting and home composting). ViSS PHBV will be produced from industrial organic residues and will be formulated and compounded to be transformed and validated as high-performance food packaging, being mechanically recyclable and biodegradable.
Moreover, the whole ViSS circular value chain will be constructed upon a collaborative approach and under safe and sustainable criteria, accomplishing EU regulations and ensuring policy alignment, while the project will deliver and disseminate digital tools and resources which will favour an increased social readiness and marketability of bio-based plastics, fostering a ViSS wide adoption and replication.
Our project gathers 15 partners from 6 European countries leaders in different fields of knowledge, from bioplastic production to validation in real packaging applications.
Adoption of ViSS value chain will produce relevant outcomes as improved functionalities and environmental performances: reduction of 57.8% of CO2 emissions compared to fossil counterparts, yearly saving 11.7 kt of crude oil, recirculating 288.95 kt of biomass, avoiding the use of 2.2 kt of hazardous substances.

Status

SIGNED

Call topic

HORIZON-CL6-2022-CIRCBIO-02-03-two-stage

Update Date

31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.2 Global Challenges and European Industrial Competitiveness
HORIZON.2.6 Food, Bioeconomy Natural Resources, Agriculture and Environment
HORIZON.2.6.6 Bio-based Innovation Systems in the EU Bioeconomy
HORIZON-CL6-2022-CIRCBIO-02-two-stage
HORIZON-CL6-2022-CIRCBIO-02-03-two-stage Sustainable biodegradable novel bio-based plastics: innovation for sustainability and end-of-life options of plastics