Summary
The 14AMI project is about creating technological solutions for the 14 Angstrom CMOS technology node, including a fully integrated functional CFET (Complementary Field Effect Transistor) as new active CMOS device, and state-of-the-art holistic metrology techniques for both wafer and mask inspection and review. All is aimed to keep the pace in the industry to follow “Moore’s law”.
The project addresses the following 3 main pillars that are relevant in enabling manufacture of 14A technology, 1) lithography, 2) metrology and 3) process module integration.
In lithography the aim is to realize solutions for the 0.55NA EUV scanner platform to secure 14Angstrom node compliance in performance, that is, resolution, alignment, throughput and optics lifetime. In Metrology the objective is to cover wafer and mask metrology and quality control. The aim is to develop holistic metrology, tools & methods and data analytics to improve overlay, CD and focus measurement and quality control with a Precision to Tolerance, P/T, ratio between 0.1 and 0.3. In process module integration work covers the realization and demonstration of a CFET – Complementary Field Effect Transistor - CMOS device. Three options will be investigated for integration; a monolithic, sequential and a hybrid solution. In addition, the partners will develop a PFAS-free photo resist to reduce the ecological footprint of photolithography processes, and a smart AI based sensor technology to improve vacuum chambers' efficiency and reduce waste.
At societal level the expected impact of the 14AMI project will support the partners and their supplier network to stay at the leading edge of high-tech developments, crucial to meet the digitization challenges of the European society. Moreover, 14AMI will “boost industrial competitiveness”, and attract talent in Europe, while enabling new application in areas such as security, communication and enabling of further automation in mobility, health and research.
The project addresses the following 3 main pillars that are relevant in enabling manufacture of 14A technology, 1) lithography, 2) metrology and 3) process module integration.
In lithography the aim is to realize solutions for the 0.55NA EUV scanner platform to secure 14Angstrom node compliance in performance, that is, resolution, alignment, throughput and optics lifetime. In Metrology the objective is to cover wafer and mask metrology and quality control. The aim is to develop holistic metrology, tools & methods and data analytics to improve overlay, CD and focus measurement and quality control with a Precision to Tolerance, P/T, ratio between 0.1 and 0.3. In process module integration work covers the realization and demonstration of a CFET – Complementary Field Effect Transistor - CMOS device. Three options will be investigated for integration; a monolithic, sequential and a hybrid solution. In addition, the partners will develop a PFAS-free photo resist to reduce the ecological footprint of photolithography processes, and a smart AI based sensor technology to improve vacuum chambers' efficiency and reduce waste.
At societal level the expected impact of the 14AMI project will support the partners and their supplier network to stay at the leading edge of high-tech developments, crucial to meet the digitization challenges of the European society. Moreover, 14AMI will “boost industrial competitiveness”, and attract talent in Europe, while enabling new application in areas such as security, communication and enabling of further automation in mobility, health and research.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101111948 |
Start date: | 01-05-2023 |
End date: | 30-04-2026 |
Total budget - Public funding: | 108 797 079,90 Euro - 25 000 000,00 Euro |
Cordis data
Original description
The 14AMI project is about creating technological solutions for the 14 Angstrom CMOS technology node, including a fully integrated functional CFET (Complementary Field Effect Transistor) as new active CMOS device, and state-of-the-art holistic metrology techniques for both wafer and mask inspection and review. All is aimed to keep the pace in the industry to follow “Moore’s law”.The project addresses the following 3 main pillars that are relevant in enabling manufacture of 14A technology, 1) lithography, 2) metrology and 3) process module integration.
In lithography the aim is to realize solutions for the 0.55NA EUV scanner platform to secure 14Angstrom node compliance in performance, that is, resolution, alignment, throughput and optics lifetime. In Metrology the objective is to cover wafer and mask metrology and quality control. The aim is to develop holistic metrology, tools & methods and data analytics to improve overlay, CD and focus measurement and quality control with a Precision to Tolerance, P/T, ratio between 0.1 and 0.3. In process module integration work covers the realization and demonstration of a CFET – Complementary Field Effect Transistor - CMOS device. Three options will be investigated for integration; a monolithic, sequential and a hybrid solution. In addition, the partners will develop a PFAS-free photo resist to reduce the ecological footprint of photolithography processes, and a smart AI based sensor technology to improve vacuum chambers' efficiency and reduce waste.
At societal level the expected impact of the 14AMI project will support the partners and their supplier network to stay at the leading edge of high-tech developments, crucial to meet the digitization challenges of the European society. Moreover, 14AMI will “boost industrial competitiveness”, and attract talent in Europe, while enabling new application in areas such as security, communication and enabling of further automation in mobility, health and research.
Status
SIGNEDCall topic
HORIZON-KDT-JU-2022-1-IA-Topic-1Update Date
31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping