Summary
GRAPHERGIA aims is to develop a new science-based, holistic approach, implementing new advances to achieve one-step, laser-assisted synthesis, processing, functionalization and simultaneous integration of graphene-based materials and graphene nanohybrids, directly into relevant energy harvesting/storage devices. This will lead to a scalable, cost-effective and climate-neutral production of (i) e-textiles with the specific functions of wearable power supplying and self-powered structural sensors and (ii) next generation electrodes for Li-ion batteries. Based on current TRL 3-4 activities, the consortium explores novel ideas for 2D materials engineering and integration at TRL 5 or higher, establishing versatile pilot-scale-based approaches for these two types of applications. Configurations of TENG-based e-textiles will be prepared to fabricate flexible architectures, designed to sustainably convert energy from the environment to electricity. Laser-scribed solid-state micro-flexible supercapacitors, will be coupled to TENGs, via innovative power management circuits, acting as energy reservoirs to provide on-demand batteryless charging to wearable devices and sensors. All-in-one, self-charging power textiles with integrated electronic systems will provide a human-body-centric technology and interface of the user to the IoT by wireless transmission of sensors’ signals. In parallel, GRAPHERGIA defines a credible “dry electrode” approach to fabricate next generation electrodes for Li-ion batteries aspiring to reach the technical/economic targets of the 2030 European SET-plan. The proposed methodology will be implemented by blending recently devised IPR-protected technologies of consortium partners. To achieve these targets, a combined 2D materials and process-oriented approaches will be adopted, based on low-cost raw materials and inherently scalable fabrication approaches to ensure a cost-effective and climate-neutral production of energy harvesting and storage devices.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101120832 |
Start date: | 01-10-2023 |
End date: | 31-03-2027 |
Total budget - Public funding: | 4 499 331,25 Euro - 4 499 331,00 Euro |
Cordis data
Original description
GRAPHERGIA aims is to develop a new science-based, holistic approach, implementing new advances to achieve one-step, laser-assisted synthesis, processing, functionalization and simultaneous integration of graphene-based materials and graphene nanohybrids, directly into relevant energy harvesting/storage devices. This will lead to a scalable, cost-effective and climate-neutral production of (i) e-textiles with the specific functions of wearable power supplying and self-powered structural sensors and (ii) next generation electrodes for Li-ion batteries. Based on current TRL 3-4 activities, the consortium explores novel ideas for 2D materials engineering and integration at TRL 5 or higher, establishing versatile pilot-scale-based approaches for these two types of applications. Configurations of TENG-based e-textiles will be prepared to fabricate flexible architectures, designed to sustainably convert energy from the environment to electricity. Laser-scribed solid-state micro-flexible supercapacitors, will be coupled to TENGs, via innovative power management circuits, acting as energy reservoirs to provide on-demand batteryless charging to wearable devices and sensors. All-in-one, self-charging power textiles with integrated electronic systems will provide a human-body-centric technology and interface of the user to the IoT by wireless transmission of sensors’ signals. In parallel, GRAPHERGIA defines a credible “dry electrode” approach to fabricate next generation electrodes for Li-ion batteries aspiring to reach the technical/economic targets of the 2030 European SET-plan. The proposed methodology will be implemented by blending recently devised IPR-protected technologies of consortium partners. To achieve these targets, a combined 2D materials and process-oriented approaches will be adopted, based on low-cost raw materials and inherently scalable fabrication approaches to ensure a cost-effective and climate-neutral production of energy harvesting and storage devices.Status
SIGNEDCall topic
HORIZON-CL4-2022-DIGITAL-EMERGING-02-18Update Date
31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all