ENTWINE | Outcomes of plant invasions in deadwood fungi and insect communities

Summary
ENTWINE aims to understand whether and how invasive plants colonize new places, altering the structure of communities of fungus and insects linked with deadwood. The project integrates metabarcoding, phylogenetics, and community ecology to sample empirical and experimental communities that exploit native and invasive deadwood species in native and invaded forests throughout Lithuania. Exploiting long-read sequencing technologies and a bioinformatic pipeline to phase barcoding markers into Operational Taxonomic Units (OTUs), I will obtain normalised OTU richness and relative abundances and compare the β- species, phylogenetic, and functional diversity estimates between communities. Insects and fungi exploiting and living in deadwood form entwined communities that play a critical role in nutrient cycling, wood decomposition, and pathogen control. In addition to abiotic factors like local climate, biotic factors like deadwood species and decay stage influence the structure and strength of the associations with each other and their shared habitat. The abundance and quality of deadwood correlate with the local tree composition, which shifts as the invading Acer negundo spreads and outcompetes local Alnus glutinosa trees. Insect and fungi species turnover or variation in relative abundances might then result from e.g. the local extinction of rare specialists associated with A. glutinosa, the introduction of new species associated with A. negundo deadwood, and/or the increase in abundance of generalist species. Those changes in community structure resulting from A. negundo invasions may contribute to the loss of species and their ecological functions. This indicates the need to control the spread of invasive plants to prevent the extinction of vulnerable or rare species and the importance of learning the ecological roles of undiscovered species before they vanish unnoticed. ENTWINE is developed in collaboration with the Life Sciences Centre at Vilnius University, Lithuania
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101130794
Start date: 01-04-2024
End date: 31-03-2026
Total budget - Public funding: - 158 597,00 Euro
Cordis data

Original description

ENTWINE aims to understand whether and how invasive plants colonize new places, altering the structure of communities of fungus and insects linked with deadwood. The project integrates metabarcoding, phylogenetics, and community ecology to sample empirical and experimental communities that exploit native and invasive deadwood species in native and invaded forests throughout Lithuania. Exploiting long-read sequencing technologies and a bioinformatic pipeline to phase barcoding markers into Operational Taxonomic Units (OTUs), I will obtain normalised OTU richness and relative abundances and compare the β- species, phylogenetic, and functional diversity estimates between communities. Insects and fungi exploiting and living in deadwood form entwined communities that play a critical role in nutrient cycling, wood decomposition, and pathogen control. In addition to abiotic factors like local climate, biotic factors like deadwood species and decay stage influence the structure and strength of the associations with each other and their shared habitat. The abundance and quality of deadwood correlate with the local tree composition, which shifts as the invading Acer negundo spreads and outcompetes local Alnus glutinosa trees. Insect and fungi species turnover or variation in relative abundances might then result from e.g. the local extinction of rare specialists associated with A. glutinosa, the introduction of new species associated with A. negundo deadwood, and/or the increase in abundance of generalist species. Those changes in community structure resulting from A. negundo invasions may contribute to the loss of species and their ecological functions. This indicates the need to control the spread of invasive plants to prevent the extinction of vulnerable or rare species and the importance of learning the ecological roles of undiscovered species before they vanish unnoticed. ENTWINE is developed in collaboration with the Life Sciences Centre at Vilnius University, Lithuania

Status

SIGNED

Call topic

HORIZON-WIDERA-2022-TALENTS-04-01

Update Date

31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.4 Widening Participation and Strengthening the European Research Area
HORIZON.4.1 Widening participation and spreading excellence
HORIZON.4.1.5 Fostering brain circulation of researchers and excellence initiatives
HORIZON-WIDERA-2022-TALENTS-04
HORIZON-WIDERA-2022-TALENTS-04-01 Fostering balanced brain circulation – ERA Fellowships