CHARMAELEON | Electric Machines with Inherent Speed-Dependent Characteristics for More Sustainable and Efficient Energy Conversion

Summary
Half of the total electric energy consumed within the European Union is used for operating electric machines. Those might feature high efficiency for rated load, but partial load and overload performance often is very poor. Additionally, given some voltage and current limits for driving machines, designers need to trade good performance at high torque versus high-speed capabilities. Machines with speed-dependent characteristics would facilitate overcoming the current limitations and thus are the subject of this ERC project. The main approach for realizing operation dependent machine characteristics is to acquit oneself of thinking that the electric machine structure must be static. Allowing solid parts of the rotor to change in position or powder-based compounds to vary in local density while rotating enables a new class of designs. The realization requires all-new methods for designing the speed-dependent properties. This embraces techniques for co-simulating mechanical and electromagnetic aspects including components’ or particles’ movement, the experiment-driven characterization of powder-based soft magnetic materials with variable local density, micro- versus macroscopic modelling of magnetic properties, and the development of promising concepts for future electric machine design and their experimental proof of concept. The basic idea is simple, but its effective implementation is challenging and requires pioneering cross-disciplinary research. The PI has successfully demonstrated the ability to advance the state-of-the-art in electric machine design. The gained results will allow for simultaneously achieving higher net efficiency levels and reducing the consumption of resources due to an improved utilization of the applied components. The project will thus help to reduce the overall energy consumption and to minimize the need for critical raw materials. The reward of this project is tremendous and the expected outcome will beneficially affect our future lives.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101078304
Start date: 01-04-2023
End date: 31-03-2028
Total budget - Public funding: 1 499 921,00 Euro - 1 499 921,00 Euro
Cordis data

Original description

Half of the total electric energy consumed within the European Union is used for operating electric machines. Those might feature high efficiency for rated load, but partial load and overload performance often is very poor. Additionally, given some voltage and current limits for driving machines, designers need to trade good performance at high torque versus high-speed capabilities. Machines with speed-dependent characteristics would facilitate overcoming the current limitations and thus are the subject of this ERC project. The main approach for realizing operation dependent machine characteristics is to acquit oneself of thinking that the electric machine structure must be static. Allowing solid parts of the rotor to change in position or powder-based compounds to vary in local density while rotating enables a new class of designs. The realization requires all-new methods for designing the speed-dependent properties. This embraces techniques for co-simulating mechanical and electromagnetic aspects including components’ or particles’ movement, the experiment-driven characterization of powder-based soft magnetic materials with variable local density, micro- versus macroscopic modelling of magnetic properties, and the development of promising concepts for future electric machine design and their experimental proof of concept. The basic idea is simple, but its effective implementation is challenging and requires pioneering cross-disciplinary research. The PI has successfully demonstrated the ability to advance the state-of-the-art in electric machine design. The gained results will allow for simultaneously achieving higher net efficiency levels and reducing the consumption of resources due to an improved utilization of the applied components. The project will thus help to reduce the overall energy consumption and to minimize the need for critical raw materials. The reward of this project is tremendous and the expected outcome will beneficially affect our future lives.

Status

SIGNED

Call topic

ERC-2022-STG

Update Date

31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2022-STG ERC STARTING GRANTS
HORIZON.1.1.1 Frontier science
ERC-2022-STG ERC STARTING GRANTS