RT-MAP | Reactivity and Transport of Hollow Magnetic Particles Explored with Microfluidics

Summary
RT-MAP will develop novel hollow iron oxide particles and assess their reactivity, stability and mobility under flow through porous media. Such hollow magnetic particles (h-MPs) have aroused great interest for their potential to encapsulate and control reagent release for environmental remediation and/or heterogeneous catalysis. Most available reactivity assessment studies rely on the interpretation of breakthrough curves measurement at the outlet batch tests or column experiments and do not allow a direct visualization of pore scale transport and reaction phenomena. RT-MAP will develop novel microfluidic cells, providing a new window on coupled flow and reaction processes at the microscale, a key to modeling and predicting macroscale reaction rates. The combination of complementary expertise of the fellow (material synthesis and characterization), and the supervisor and co-supervisors (molecular geochemistry, reactive transport in porous media, microfluidics) will offer a unique opportunity to address these emerging scientific questions. We will thus fabricate microfluidic cells providing spatially resolved concentration fields under flow through reactive porous media. Cutting-edge spectroscopic techniques will be used to investigate molecular interactions between reactive particles and two types of fluorescent compounds. The first is a fluorescent probe (fluorescein) used to functionalize particles and make them traceable by imaging in microfluidics. The second is an environmentally relevant antibiotic (ofloxacine) to study the reactive properties of h-MPs with emerging contaminants. Advanced microfluidic devices and fluorescence imaging will provide the first spatial resolved images of h-MP concentration at microscale under different flow rates and solution chemistry. RT-MAP will thus lead to key innovations at the interface of environmental chemistry, geosciences and microfluidics, placing the fellow on a strong footing to find an independent research position.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101110038
Start date: 01-05-2023
End date: 30-04-2025
Total budget - Public funding: - 211 754,00 Euro
Cordis data

Original description

RT-MAP will develop novel hollow iron oxide particles and assess their reactivity, stability and mobility under flow through porous media. Such hollow magnetic particles (h-MPs) have aroused great interest for their potential to encapsulate and control reagent release for environmental remediation and/or heterogeneous catalysis. Most available reactivity assessment studies rely on the interpretation of breakthrough curves measurement at the outlet batch tests or column experiments and do not allow a direct visualization of pore scale transport and reaction phenomena. RT-MAP will develop novel microfluidic cells, providing a new window on coupled flow and reaction processes at the microscale, a key to modeling and predicting macroscale reaction rates. The combination of complementary expertise of the fellow (material synthesis and characterization), and the supervisor and co-supervisors (molecular geochemistry, reactive transport in porous media, microfluidics) will offer a unique opportunity to address these emerging scientific questions. We will thus fabricate microfluidic cells providing spatially resolved concentration fields under flow through reactive porous media. Cutting-edge spectroscopic techniques will be used to investigate molecular interactions between reactive particles and two types of fluorescent compounds. The first is a fluorescent probe (fluorescein) used to functionalize particles and make them traceable by imaging in microfluidics. The second is an environmentally relevant antibiotic (ofloxacine) to study the reactive properties of h-MPs with emerging contaminants. Advanced microfluidic devices and fluorescence imaging will provide the first spatial resolved images of h-MP concentration at microscale under different flow rates and solution chemistry. RT-MAP will thus lead to key innovations at the interface of environmental chemistry, geosciences and microfluidics, placing the fellow on a strong footing to find an independent research position.

Status

SIGNED

Call topic

HORIZON-MSCA-2022-PF-01-01

Update Date

31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2022-PF-01
HORIZON-MSCA-2022-PF-01-01 MSCA Postdoctoral Fellowships 2022