Q-JEPS | Quantum simulation of Jet Evolution and Parton Structure

Summary
Quantum computing has emerged as a new method to simulate many-body quantum systems, especially in nuclear and high energy physics. The goal of this proposal is to develop the first quantum computing framework for multi-particle jet evolution using the light-front Hamiltonian approach and parton structure functions related to core high energy experiments using available noisy intermediate-scale quantum (NISQ) computers. The fruition of this 24-month project will provide an alternative “quantum” perspective to jet physics, which complements current classical models. By using qubit, a two-level quantum state, quantum simulation triumphs over its classical counterpart by taking asymptotically fewer computational resources, especially when quantum processors become available in the next few years. To this end, I propose to spend the first 16 months at my main host, the Galician Institute of High Energy Physics (IGFAE) of the University of Santiago de Compostela (USC), under supervisor Professor Carlos Salgado on jet physics and quantum simulations. Here, I will develop an efficient Hamiltonian and state encoding scheme for the quantum simulation of composite jets in a dense background field to extract useful observables such as the jet quenching parameter. In the next 4 months, I will work at the second host, the University of California Los Angeles (UCLA), with supervisor Professor Zhongbo Kang on parton structure functions. I will study different quantum algorithms, especially quantum imaginary time evolution, to obtain various parton structure functions with quantum computing. In the final 4 months, I will return to USC to build and publish the first open-source quantum simulation software in high energy physics for jet evolution and parton structure calculations. My project will answer some of the most challenging research questions in jet phenomenologies and quantum simulation algorithms, and lay the groundwork for future quantum applications.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101109293
Start date: 01-06-2023
End date: 31-05-2025
Total budget - Public funding: - 181 152,00 Euro
Cordis data

Original description

Quantum computing has emerged as a new method to simulate many-body quantum systems, especially in nuclear and high energy physics. The goal of this proposal is to develop the first quantum computing framework for multi-particle jet evolution using the light-front Hamiltonian approach and parton structure functions related to core high energy experiments using available noisy intermediate-scale quantum (NISQ) computers. The fruition of this 24-month project will provide an alternative “quantum” perspective to jet physics, which complements current classical models. By using qubit, a two-level quantum state, quantum simulation triumphs over its classical counterpart by taking asymptotically fewer computational resources, especially when quantum processors become available in the next few years. To this end, I propose to spend the first 16 months at my main host, the Galician Institute of High Energy Physics (IGFAE) of the University of Santiago de Compostela (USC), under supervisor Professor Carlos Salgado on jet physics and quantum simulations. Here, I will develop an efficient Hamiltonian and state encoding scheme for the quantum simulation of composite jets in a dense background field to extract useful observables such as the jet quenching parameter. In the next 4 months, I will work at the second host, the University of California Los Angeles (UCLA), with supervisor Professor Zhongbo Kang on parton structure functions. I will study different quantum algorithms, especially quantum imaginary time evolution, to obtain various parton structure functions with quantum computing. In the final 4 months, I will return to USC to build and publish the first open-source quantum simulation software in high energy physics for jet evolution and parton structure calculations. My project will answer some of the most challenging research questions in jet phenomenologies and quantum simulation algorithms, and lay the groundwork for future quantum applications.

Status

SIGNED

Call topic

HORIZON-MSCA-2022-PF-01-01

Update Date

31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2022-PF-01
HORIZON-MSCA-2022-PF-01-01 MSCA Postdoctoral Fellowships 2022