Summary
Synthetic materials exist in a broad variety of sizes, shapes and compositions leading to an impressive breadth of useful functions but tend to be case-specific. Living matter, in contrast, has the remarkable capability to sense, evolve, transform and adapt. Here, we propose to develop new DNA-encoded dynamic principles and implement them as molecular codes to program similar life-like characteristics in a variety of synthetic soft materials, ranging from evolutive DNA nanomachines to genetically encoded active interfaces. Various DNA nanostructures (DNA origamis, single-stranded tiles, DNA nanogrids) will be produced by a new concept of isothermal and reconfigurable DNA self-assembly, leading to user-defined self-assembled structures capable to adapt and morphologically transform, autonomously or in response to a stimulus. Coupling proteins to these reconfigurable nanoscaffolds will allow us to reconstitute dynamic synthetic metabolic pathways, design programmable catalytic switch or develop a new principle of nanostructure discovery by evolution. Beside encoding structural dynamics, we will also incorporate gene-containing DNA in interface-rich materials (films, drops, emulsions) to program, at a genetic level for the first time, the active behaviour and dynamic functionality of these systems. In situ cell-free expression of interfacially active proteins, such as BslA and hydrophobins, will allow us to control the interfacial properties (surface tension, visco-elasticity), either uniformly or with controlled spatio-temporal patterns. This will result in original genetically encoded active behaviours such as genetic Marangoni effects, propulsion, genophoresis or autonomous genetic sorting. Additional functionality will be brought by co-expressing useful proteins (enzymes, antibodies) at these interfaces, resulting in highly dynamic, reconfigurable, versatile and multifunctional soft materials.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101096956 |
Start date: | 01-09-2023 |
End date: | 31-08-2028 |
Total budget - Public funding: | 2 496 750,00 Euro - 2 496 750,00 Euro |
Cordis data
Original description
Synthetic materials exist in a broad variety of sizes, shapes and compositions leading to an impressive breadth of useful functions but tend to be case-specific. Living matter, in contrast, has the remarkable capability to sense, evolve, transform and adapt. Here, we propose to develop new DNA-encoded dynamic principles and implement them as molecular codes to program similar life-like characteristics in a variety of synthetic soft materials, ranging from evolutive DNA nanomachines to genetically encoded active interfaces. Various DNA nanostructures (DNA origamis, single-stranded tiles, DNA nanogrids) will be produced by a new concept of isothermal and reconfigurable DNA self-assembly, leading to user-defined self-assembled structures capable to adapt and morphologically transform, autonomously or in response to a stimulus. Coupling proteins to these reconfigurable nanoscaffolds will allow us to reconstitute dynamic synthetic metabolic pathways, design programmable catalytic switch or develop a new principle of nanostructure discovery by evolution. Beside encoding structural dynamics, we will also incorporate gene-containing DNA in interface-rich materials (films, drops, emulsions) to program, at a genetic level for the first time, the active behaviour and dynamic functionality of these systems. In situ cell-free expression of interfacially active proteins, such as BslA and hydrophobins, will allow us to control the interfacial properties (surface tension, visco-elasticity), either uniformly or with controlled spatio-temporal patterns. This will result in original genetically encoded active behaviours such as genetic Marangoni effects, propulsion, genophoresis or autonomous genetic sorting. Additional functionality will be brought by co-expressing useful proteins (enzymes, antibodies) at these interfaces, resulting in highly dynamic, reconfigurable, versatile and multifunctional soft materials.Status
SIGNEDCall topic
ERC-2022-ADGUpdate Date
31-07-2023
Images
No images available.
Geographical location(s)