RegrOssBio | Injectable biomimetic octacalcium phosphate based composites with antibacterial action for implant re-ossteointegration

Summary
With increase of global dental implant industry, perimplantitis became an emerging problem worldwide, affecting up to 43% of the placed implants. Periimplantitis is caused by pathogenic microorganisms,that adhere to the implant surface triggering imflammation and bone destruction, eventally leading to implant loss in half of the cases. The overall aim of periimplantitis treatment is re-osteointegration of implant with surrounding bone, that can be achieved only in case of complete control over infection The existing treatment approaches are not able to provide efficient decontamination of the implant surfaces, while effectiveness of the existing local antibiotic delivery systems is questionable. The aim of this project is to develop biomimetic injectable CaP-based pastes with antibacterial and osteogenic properties for periimplantitis treatment. We will utilize biocompatible materials, such as octacalcium phosphate (OCP) and natural hydrogels (hyaluronic acid and functionalized gelatin) that closely resemble to the composition of inorganic and organic components of the bone extracellular matrix. They will serve as versatile platforms for local delivery of antibiotics such as Metronidazole and Doxyciсline or antimicrobial nanoparticles into the peri-implant pockets after mechanical removal of the bacterial biofilm. We hypothesize that these materials will offer control over infection in peri implant area and subsequent cellular functions and may have a great potential for implant re-osteointegration. To date, antibacterial formulations of bone graft materials, targeting peri-implant oral microflora are not available in the market. The obtained innovational products, designed according to the Principles of Good Manufacturing will have optimized composition and handling properties to be used straightforward at the chairside in dental office, without additional invasive surgical manipulations.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101106882
Start date: 01-08-2023
End date: 31-07-2025
Total budget - Public funding: - 162 499,00 Euro
Cordis data

Original description

With increase of global dental implant industry, perimplantitis became an emerging problem worldwide, affecting up to 43% of the placed implants. Periimplantitis is caused by pathogenic microorganisms,that adhere to the implant surface triggering imflammation and bone destruction, eventally leading to implant loss in half of the cases. The overall aim of periimplantitis treatment is re-osteointegration of implant with surrounding bone, that can be achieved only in case of complete control over infection The existing treatment approaches are not able to provide efficient decontamination of the implant surfaces, while effectiveness of the existing local antibiotic delivery systems is questionable. The aim of this project is to develop biomimetic injectable CaP-based pastes with antibacterial and osteogenic properties for periimplantitis treatment. We will utilize biocompatible materials, such as octacalcium phosphate (OCP) and natural hydrogels (hyaluronic acid and functionalized gelatin) that closely resemble to the composition of inorganic and organic components of the bone extracellular matrix. They will serve as versatile platforms for local delivery of antibiotics such as Metronidazole and Doxyciсline or antimicrobial nanoparticles into the peri-implant pockets after mechanical removal of the bacterial biofilm. We hypothesize that these materials will offer control over infection in peri implant area and subsequent cellular functions and may have a great potential for implant re-osteointegration. To date, antibacterial formulations of bone graft materials, targeting peri-implant oral microflora are not available in the market. The obtained innovational products, designed according to the Principles of Good Manufacturing will have optimized composition and handling properties to be used straightforward at the chairside in dental office, without additional invasive surgical manipulations.

Status

SIGNED

Call topic

HORIZON-MSCA-2022-PF-01-01

Update Date

31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2022-PF-01
HORIZON-MSCA-2022-PF-01-01 MSCA Postdoctoral Fellowships 2022