Summary
Technological progress and increasingly environmental-related problems call for new cutting-edge design strategies to improve materials’ functionalities. The S-FOAM's challenge is to breakthrough metamaterial design by implanting origami/kirigami capabilities within architected cellular structures at different scales, thus bringing metamaterials to unprecedented mechanical performance.
The resulting metamaterials will combine multistability, anisotropy, geometrical frustration, control of localized deformation, and ellipticity loss to achieve a new capability: self-foldability and shape-morphing induced by external stimuli.
Unlike what happens in currently available origami, the location of the creases is not a priori imposed, but self-guided by ellipticity loss, occurring in the homogenized material, equivalent to the kirigami/origami, and self-controlled by embedding within the microstructure topological point and line defects. This introduces an unexplored field of research in which a material element will become able to mechanically react to actions from the surroundings through a direct change in its shape, thus reaching a configuration that optimizes its stiffness, strength, toughness, and, in a word, its environmental resilience.
The research project S-FOAM will develop modelling based on the mechanics of solids and structures, numerical simulations, and experimental tools for the optimal design of origami/kirigami-lattice metamaterials.
Applications are envisaged in soft robotics where grippers grasp and manipulate objects without damaging them, and in wearable devices where materials gently adapt to humans’ movements. Moreover, the design principle provided by S-FOAM is of great interest in developing adaptive medical devices and in maximizing solar power intake through flexible PVs integrated into metamaterials capable of changing shape depending on the sun motion.
The resulting metamaterials will combine multistability, anisotropy, geometrical frustration, control of localized deformation, and ellipticity loss to achieve a new capability: self-foldability and shape-morphing induced by external stimuli.
Unlike what happens in currently available origami, the location of the creases is not a priori imposed, but self-guided by ellipticity loss, occurring in the homogenized material, equivalent to the kirigami/origami, and self-controlled by embedding within the microstructure topological point and line defects. This introduces an unexplored field of research in which a material element will become able to mechanically react to actions from the surroundings through a direct change in its shape, thus reaching a configuration that optimizes its stiffness, strength, toughness, and, in a word, its environmental resilience.
The research project S-FOAM will develop modelling based on the mechanics of solids and structures, numerical simulations, and experimental tools for the optimal design of origami/kirigami-lattice metamaterials.
Applications are envisaged in soft robotics where grippers grasp and manipulate objects without damaging them, and in wearable devices where materials gently adapt to humans’ movements. Moreover, the design principle provided by S-FOAM is of great interest in developing adaptive medical devices and in maximizing solar power intake through flexible PVs integrated into metamaterials capable of changing shape depending on the sun motion.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101086644 |
Start date: | 01-01-2024 |
End date: | 31-12-2028 |
Total budget - Public funding: | 1 930 096,00 Euro - 1 930 096,00 Euro |
Cordis data
Original description
Technological progress and increasingly environmental-related problems call for new cutting-edge design strategies to improve materials’ functionalities. The S-FOAM's challenge is to breakthrough metamaterial design by implanting origami/kirigami capabilities within architected cellular structures at different scales, thus bringing metamaterials to unprecedented mechanical performance.The resulting metamaterials will combine multistability, anisotropy, geometrical frustration, control of localized deformation, and ellipticity loss to achieve a new capability: self-foldability and shape-morphing induced by external stimuli.
Unlike what happens in currently available origami, the location of the creases is not a priori imposed, but self-guided by ellipticity loss, occurring in the homogenized material, equivalent to the kirigami/origami, and self-controlled by embedding within the microstructure topological point and line defects. This introduces an unexplored field of research in which a material element will become able to mechanically react to actions from the surroundings through a direct change in its shape, thus reaching a configuration that optimizes its stiffness, strength, toughness, and, in a word, its environmental resilience.
The research project S-FOAM will develop modelling based on the mechanics of solids and structures, numerical simulations, and experimental tools for the optimal design of origami/kirigami-lattice metamaterials.
Applications are envisaged in soft robotics where grippers grasp and manipulate objects without damaging them, and in wearable devices where materials gently adapt to humans’ movements. Moreover, the design principle provided by S-FOAM is of great interest in developing adaptive medical devices and in maximizing solar power intake through flexible PVs integrated into metamaterials capable of changing shape depending on the sun motion.
Status
SIGNEDCall topic
ERC-2022-COGUpdate Date
31-07-2023
Images
No images available.
Geographical location(s)