SCIMITAR | Synergistic Combination of Immunolabeling and Molecular Imaging Technologies for Art Research

Summary
Our cultural heritage is our shared past and should be preserved for future generations. In order to preserve an art object, it is not only essential to study its structure, creation, history, and significance, but it is also necessary to understand its past and current state as well as projected changes in the future. In the case of old paintings, this requires being able to correlate macroscopic observations with its chemical make-up at the microscopic level. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) is a powerful chemical imaging technique, especially suited for heterogeneous systems such as paintings. ToF-SIMS can simultaneously localize and identify organic and mineral components and has the highest spatial resolution of all the molecular imaging mass spectrometry techniques. The sub-micrometer spatial resolution of ToF-SIMS is needed to investigate painting micro-samples that consist of sub-millimeter stacked layers of dried paint that contain both organic and inorganic ingredients. Case studies published over the last two decades attest to the potential of ToF-SIMS in providing information relevant for painting conservation. However, the resulting imaging datasets are very complex often causing a large proportion to remain unexploited. The high energy ion source of the instruments also causes larger biomolecules such as proteins to fragment, making it impossible to identify them. Meanwhile, a variety of protein-rich ingredients coexist and age in paintings, which means that identifying their nature would be extremely valuable to conservation experts. The proposal aims at tackling these weaknesses by developing methods to unambiguously identify the materials found in the heterogeneous microstructures of old paintings samples using a ToF-SIMS instrument with novel Tandem MS imaging capabilities as well as the development of a ToF-SIMS-based immunohistochemistry relying on metal-labeled antibodies to allow for targeted protein imaging.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101108506
Start date: 23-10-2023
End date: 22-10-2025
Total budget - Public funding: - 187 624,00 Euro
Cordis data

Original description

Our cultural heritage is our shared past and should be preserved for future generations. In order to preserve an art object, it is not only essential to study its structure, creation, history, and significance, but it is also necessary to understand its past and current state as well as projected changes in the future. In the case of old paintings, this requires being able to correlate macroscopic observations with its chemical make-up at the microscopic level. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) is a powerful chemical imaging technique, especially suited for heterogeneous systems such as paintings. ToF-SIMS can simultaneously localize and identify organic and mineral components and has the highest spatial resolution of all the molecular imaging mass spectrometry techniques. The sub-micrometer spatial resolution of ToF-SIMS is needed to investigate painting micro-samples that consist of sub-millimeter stacked layers of dried paint that contain both organic and inorganic ingredients. Case studies published over the last two decades attest to the potential of ToF-SIMS in providing information relevant for painting conservation. However, the resulting imaging datasets are very complex often causing a large proportion to remain unexploited. The high energy ion source of the instruments also causes larger biomolecules such as proteins to fragment, making it impossible to identify them. Meanwhile, a variety of protein-rich ingredients coexist and age in paintings, which means that identifying their nature would be extremely valuable to conservation experts. The proposal aims at tackling these weaknesses by developing methods to unambiguously identify the materials found in the heterogeneous microstructures of old paintings samples using a ToF-SIMS instrument with novel Tandem MS imaging capabilities as well as the development of a ToF-SIMS-based immunohistochemistry relying on metal-labeled antibodies to allow for targeted protein imaging.

Status

SIGNED

Call topic

HORIZON-MSCA-2022-PF-01-01

Update Date

31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2022-PF-01
HORIZON-MSCA-2022-PF-01-01 MSCA Postdoctoral Fellowships 2022