Summary
Living without oxygen is challenging. To live in low-oxygen environments, some microbes exchange nutrients allowing for a division of labor among individuals in a process called ‘syntrophy’. Such interactions are often a pre-requisite for prokaryotes living in these environments. Whether syntrophy is necessary for the survival of microbial eukaryotes (protists) is unexplored and yet, critically important to discerning the roles of eukaryotes in nature and how eukaryotic cells adapt to live without oxygen.
TAngO2 will test the hypothesis that syntrophic partnerships allow eukaryotes to thrive in anaerobic environments and underpin the evolution of key eukaryotic cell biological characteristics. This will be accomplished using state-of-the-art genomic, computational, and experimental approaches.
I will discover genes essential for interactions between a model protist and its ectosymbiont using massively-parallelized transposon mutagenesis. This will discern the molecular mechanisms, metabolic interplay, and selective forces dictating eukaryote:prokaryote interactions.
I will deliver metagenomes of cultured anaerobic eukaryote:prokaryote consortia predicted to be engaging in syntrophic interactions. This will drastically expand our knowledge of the biodiversity of eukaryotic genomes and microbial interactions from low-oxygen environments.
I will interrogate the frequency and diversity of syntrophy in eukaryotes by simultaneously sequencing the genomes and transcriptomes ofindividual protist cells and their microbiota sampled from nature. This will provide the first elucidation of what communities co-exist with natural anaerobic protists.
Understanding how syntrophic interactions have influenced eukaryotic cell biology will reveal hidden connections in the complicated functional networks of the eukaryotic cell. TAngO2 will open research avenues by bridging the fields of evolutionary cell biology and microbiology to understand ancient and recent symbiotic
TAngO2 will test the hypothesis that syntrophic partnerships allow eukaryotes to thrive in anaerobic environments and underpin the evolution of key eukaryotic cell biological characteristics. This will be accomplished using state-of-the-art genomic, computational, and experimental approaches.
I will discover genes essential for interactions between a model protist and its ectosymbiont using massively-parallelized transposon mutagenesis. This will discern the molecular mechanisms, metabolic interplay, and selective forces dictating eukaryote:prokaryote interactions.
I will deliver metagenomes of cultured anaerobic eukaryote:prokaryote consortia predicted to be engaging in syntrophic interactions. This will drastically expand our knowledge of the biodiversity of eukaryotic genomes and microbial interactions from low-oxygen environments.
I will interrogate the frequency and diversity of syntrophy in eukaryotes by simultaneously sequencing the genomes and transcriptomes ofindividual protist cells and their microbiota sampled from nature. This will provide the first elucidation of what communities co-exist with natural anaerobic protists.
Understanding how syntrophic interactions have influenced eukaryotic cell biology will reveal hidden connections in the complicated functional networks of the eukaryotic cell. TAngO2 will open research avenues by bridging the fields of evolutionary cell biology and microbiology to understand ancient and recent symbiotic
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101078476 |
Start date: | 01-05-2023 |
End date: | 30-04-2028 |
Total budget - Public funding: | 1 657 193,00 Euro - 1 657 193,00 Euro |
Cordis data
Original description
Living without oxygen is challenging. To live in low-oxygen environments, some microbes exchange nutrients allowing for a division of labor among individuals in a process called ‘syntrophy’. Such interactions are often a pre-requisite for prokaryotes living in these environments. Whether syntrophy is necessary for the survival of microbial eukaryotes (protists) is unexplored and yet, critically important to discerning the roles of eukaryotes in nature and how eukaryotic cells adapt to live without oxygen.TAngO2 will test the hypothesis that syntrophic partnerships allow eukaryotes to thrive in anaerobic environments and underpin the evolution of key eukaryotic cell biological characteristics. This will be accomplished using state-of-the-art genomic, computational, and experimental approaches.
I will discover genes essential for interactions between a model protist and its ectosymbiont using massively-parallelized transposon mutagenesis. This will discern the molecular mechanisms, metabolic interplay, and selective forces dictating eukaryote:prokaryote interactions.
I will deliver metagenomes of cultured anaerobic eukaryote:prokaryote consortia predicted to be engaging in syntrophic interactions. This will drastically expand our knowledge of the biodiversity of eukaryotic genomes and microbial interactions from low-oxygen environments.
I will interrogate the frequency and diversity of syntrophy in eukaryotes by simultaneously sequencing the genomes and transcriptomes ofindividual protist cells and their microbiota sampled from nature. This will provide the first elucidation of what communities co-exist with natural anaerobic protists.
Understanding how syntrophic interactions have influenced eukaryotic cell biology will reveal hidden connections in the complicated functional networks of the eukaryotic cell. TAngO2 will open research avenues by bridging the fields of evolutionary cell biology and microbiology to understand ancient and recent symbiotic
Status
SIGNEDCall topic
ERC-2022-STGUpdate Date
31-07-2023
Images
No images available.
Geographical location(s)