LARGE BERGMAN | Toeplitz and related operators in large Bergman spaces

Summary
We consider operator theory in Bergman spaces consisting of analytic functions on complex domains. The aim is to extend known, central results of standard Bergman spaces to the case of large spaces, which are naturally defined by using rapidly decaying, non-doubling weights. The need of weighted estimates is as apparent as anywhere in harmonic analysis and applications. In the context of Bergman spaces, the case of non-doubling weights is still partially open due to the fact that such weights are not so naturally related with the hyperbolic metric of the underlying domain. In this context we plan to consider questions of boundedness of the Bergman projection in weighted L^p-norms in relation to the boundedness of Toeplitz and also little Hankel operators.
In the case of standard weighted Bergman spaces there is a well-known connection of the theory to the deformation quantization.
Another topic of recent interest is formed by the so called localized operator classes. We aim to extend these studies to the case of
large Bergman spaces.
The methodology comes from the earlier joint works of the researcher and a number of well known experts in the area, on the topic
of pointwise estimates of the Bergman kernel among others, and from the techniques of the supervisor and W.Lusky, as well as Fock-space
methods, which are naturally related to nondoubling measures.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101109510
Start date: 01-05-2023
End date: 30-04-2025
Total budget - Public funding: - 215 534,00 Euro
Cordis data

Original description

We consider operator theory in Bergman spaces consisting of analytic functions on complex domains. The aim is to extend known, central results of standard Bergman spaces to the case of large spaces, which are naturally defined by using rapidly decaying, non-doubling weights. The need of weighted estimates is as apparent as anywhere in harmonic analysis and applications. In the context of Bergman spaces, the case of non-doubling weights is still partially open due to the fact that such weights are not so naturally related with the hyperbolic metric of the underlying domain. In this context we plan to consider questions of boundedness of the Bergman projection in weighted L^p-norms in relation to the boundedness of Toeplitz and also little Hankel operators.
In the case of standard weighted Bergman spaces there is a well-known connection of the theory to the deformation quantization.
Another topic of recent interest is formed by the so called localized operator classes. We aim to extend these studies to the case of
large Bergman spaces.
The methodology comes from the earlier joint works of the researcher and a number of well known experts in the area, on the topic
of pointwise estimates of the Bergman kernel among others, and from the techniques of the supervisor and W.Lusky, as well as Fock-space
methods, which are naturally related to nondoubling measures.

Status

SIGNED

Call topic

HORIZON-MSCA-2022-PF-01-01

Update Date

31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2022-PF-01
HORIZON-MSCA-2022-PF-01-01 MSCA Postdoctoral Fellowships 2022