HOLOCELL | Holographic Assembler for 3D Cell Cultures

Summary
Cell cultures are essential for biomedical research and drug screening. The environment and the arrangement directly affect cell function. It has become clear that biological cells behave differently when cultured on a surface as opposed to a 3D environment. This discrepancy between 2D in vitro studies and the 3D environment found in vivo is critical for cancer research, most notably patient-specific therapy and high-throughput drug screening and discovery. Almost 90% of all drug candidates fail during the trial phases and one of the main reasons identified is the low physiological relevance of 2D cell cultures. Technologies are needed that enable the fast and efficient culturing of 3D cell assemblies with high repeatability and control over size and morphology. Here, we use our recently developed technology and fabrication know-how together with the expertise from our ERC-funded research to realize the first 3D bioassembler where the shape of the cell aggregates can be precisely defined by the user. Within this ERC-POC grant we plan to develop a fully operational, stand-alone benchtop bioassembler that instantly aggregates biological cells, spheroids, particles or hydrogel capsules into fully defined 3D structures using acoustic holography. Our device will be an easy-to-use and affordable instrument that is fully compatible with established biological procedures and laboratory equipment and which allows scientists to culture the specific cell structures they need. The grant will allow us to protect our know-how, identify further markets, and develop a commercialization strategy for our technology. Overall, this project will generate the first 3D cell assembler that permits the generation of user-defined cell spheroids and custom shapes at a press of button and thus presents an innovation with a sizeable market potential.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101112937
Start date: 01-03-2023
End date: 31-08-2024
Total budget - Public funding: - 150 000,00 Euro
Cordis data

Original description

Cell cultures are essential for biomedical research and drug screening. The environment and the arrangement directly affect cell function. It has become clear that biological cells behave differently when cultured on a surface as opposed to a 3D environment. This discrepancy between 2D in vitro studies and the 3D environment found in vivo is critical for cancer research, most notably patient-specific therapy and high-throughput drug screening and discovery. Almost 90% of all drug candidates fail during the trial phases and one of the main reasons identified is the low physiological relevance of 2D cell cultures. Technologies are needed that enable the fast and efficient culturing of 3D cell assemblies with high repeatability and control over size and morphology. Here, we use our recently developed technology and fabrication know-how together with the expertise from our ERC-funded research to realize the first 3D bioassembler where the shape of the cell aggregates can be precisely defined by the user. Within this ERC-POC grant we plan to develop a fully operational, stand-alone benchtop bioassembler that instantly aggregates biological cells, spheroids, particles or hydrogel capsules into fully defined 3D structures using acoustic holography. Our device will be an easy-to-use and affordable instrument that is fully compatible with established biological procedures and laboratory equipment and which allows scientists to culture the specific cell structures they need. The grant will allow us to protect our know-how, identify further markets, and develop a commercialization strategy for our technology. Overall, this project will generate the first 3D cell assembler that permits the generation of user-defined cell spheroids and custom shapes at a press of button and thus presents an innovation with a sizeable market potential.

Status

SIGNED

Call topic

ERC-2022-POC2

Update Date

31-07-2023
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
EU-Programme-Call
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2022-POC2 ERC PROOF OF CONCEPT GRANTS2
HORIZON.1.1.1 Frontier science
ERC-2022-POC2 ERC PROOF OF CONCEPT GRANTS2