Summary
As a key advancing technology, near-infrared light-emitting diodes (NIR-LEDs) cover nearly all aspects of our daily life due to their supported large applications, such as biomedical imaging, optical communication, security, and data storage. With extensive efforts, the efficiencies of LEDs have been improved by over 20% in the emission range below 800 nm. However, the development of NIR-LEDs over 800 nm is modest due to the fundamental limitation of emitters. Recently, tin-halide perovskites (THPs) have emerged as one of the most promising candidates for NIR-LED application. Through easy composition engineering, the emission of THPs can be readily tuned from 680 nm to 1000 nm. Meanwhile, the low-toxic Sn-based perovskites follow the requirements of the European Green Deal, which ask for reducing pollution to enhance the protection of human life, animals, and plants. However, the excessively high p-type doping in THPs, which reduce the carrier injection efficiency and radiative recombination efficiency, currently limits the development of THP-based NIR-LEDs. This project (MaDLED) will promote the development of NIR-LEDs by developing novel strategies to increase carrier injection and recombination efficiency. The results of this project will advance the knowledge about NIR emissive semiconductors, and be of value in other fields, such as solar cells, detects, transistors, etc. This will be achieved by integrating deep knowledge of materials science with expertise in advanced optical-electronic spectroscopies in the host (Istituto Italiano di Tecnologia, Italy). Besides, a secondment (Helio Display Materials, United Kingdom) is planned to define a suitable route to industrialization. After training in this project, I will have an increased set of research and transferable skills and competencies, which is critical to enhancing my employability and career prospects.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101105123 |
Start date: | 01-01-2024 |
End date: | 31-12-2025 |
Total budget - Public funding: | - 188 590,00 Euro |
Cordis data
Original description
As a key advancing technology, near-infrared light-emitting diodes (NIR-LEDs) cover nearly all aspects of our daily life due to their supported large applications, such as biomedical imaging, optical communication, security, and data storage. With extensive efforts, the efficiencies of LEDs have been improved by over 20% in the emission range below 800 nm. However, the development of NIR-LEDs over 800 nm is modest due to the fundamental limitation of emitters. Recently, tin-halide perovskites (THPs) have emerged as one of the most promising candidates for NIR-LED application. Through easy composition engineering, the emission of THPs can be readily tuned from 680 nm to 1000 nm. Meanwhile, the low-toxic Sn-based perovskites follow the requirements of the European Green Deal, which ask for reducing pollution to enhance the protection of human life, animals, and plants. However, the excessively high p-type doping in THPs, which reduce the carrier injection efficiency and radiative recombination efficiency, currently limits the development of THP-based NIR-LEDs. This project (MaDLED) will promote the development of NIR-LEDs by developing novel strategies to increase carrier injection and recombination efficiency. The results of this project will advance the knowledge about NIR emissive semiconductors, and be of value in other fields, such as solar cells, detects, transistors, etc. This will be achieved by integrating deep knowledge of materials science with expertise in advanced optical-electronic spectroscopies in the host (Istituto Italiano di Tecnologia, Italy). Besides, a secondment (Helio Display Materials, United Kingdom) is planned to define a suitable route to industrialization. After training in this project, I will have an increased set of research and transferable skills and competencies, which is critical to enhancing my employability and career prospects.Status
SIGNEDCall topic
HORIZON-MSCA-2022-PF-01-01Update Date
31-07-2023
Images
No images available.
Geographical location(s)