FUMA | Focused ultrasound and microbubbles targeting alpha-synuclein pathology-related dementia (FUMA)

Summary
Over half of Parkinson Disease patients develop cortical dysfunctions leading to Parkinson Disease Dementia (PDD). The cognitive changes are primarily driven by pathological alpha-synuclein (a-syn) protein aggregates with secondary synaptic dysfunctions in the cortex. Microglia plays a key role in synapse maintenance and clearance of aggregated a-syn proteins, however, this is impaired in PD.
Low intensity focused ultrasound (FUS) combined with intravenous microbubbles (MB) can non-invasively increase the permeability of the blood-brain barrier, resulting in a transient and controlled entry of blood-born substances. In animal models of Alzheimer disease, FUS-MB treatments increase microglial-mediated clearance of extra- and intracellular protein aggregates and improve synapse health. In small patient cohorts in the clinic, FUS-MB treatments are safe and results suggest decreased levels of pathological proteins in Alzheimer disease patients.
HYPOTHESIS: FUS-MB applications targeted to the cortex promote cortical a-syn clearance and synapse maintenance which can prevent or slow the development of dementia in PD.
In a mouse model of PDD we will determine the ability of FUS-MB treatment to increase microglial-mediated clearance of a-syn, maintain synapse health, and inhibit the development of cognitive dysfunctions. In addition, we aim to evaluate non-invasive positron emission tomography and magnetic resonance imaging as biomarkers of the effects of FUS-MB treatment. Finally, we will investigate the underlying pathway of potentially beneficial effects of FUS-MB treatments by measuring changes in specific pathways of interest as well as perform an unbiased screen for novel targets.
Both the researcher and supervisor have a background in Parkinson disease research. The researcher brings expertise in FUS-MB treatments of mouse models and the supervisor is an expert in preclinical and clinical neuromodulation, the latter with FUS.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101103361
Start date: 01-09-2024
End date: 31-08-2026
Total budget - Public funding: - 230 774,00 Euro
Cordis data

Original description

Over half of Parkinson Disease patients develop cortical dysfunctions leading to Parkinson Disease Dementia (PDD). The cognitive changes are primarily driven by pathological alpha-synuclein (a-syn) protein aggregates with secondary synaptic dysfunctions in the cortex. Microglia plays a key role in synapse maintenance and clearance of aggregated a-syn proteins, however, this is impaired in PD.
Low intensity focused ultrasound (FUS) combined with intravenous microbubbles (MB) can non-invasively increase the permeability of the blood-brain barrier, resulting in a transient and controlled entry of blood-born substances. In animal models of Alzheimer disease, FUS-MB treatments increase microglial-mediated clearance of extra- and intracellular protein aggregates and improve synapse health. In small patient cohorts in the clinic, FUS-MB treatments are safe and results suggest decreased levels of pathological proteins in Alzheimer disease patients.
HYPOTHESIS: FUS-MB applications targeted to the cortex promote cortical a-syn clearance and synapse maintenance which can prevent or slow the development of dementia in PD.
In a mouse model of PDD we will determine the ability of FUS-MB treatment to increase microglial-mediated clearance of a-syn, maintain synapse health, and inhibit the development of cognitive dysfunctions. In addition, we aim to evaluate non-invasive positron emission tomography and magnetic resonance imaging as biomarkers of the effects of FUS-MB treatment. Finally, we will investigate the underlying pathway of potentially beneficial effects of FUS-MB treatments by measuring changes in specific pathways of interest as well as perform an unbiased screen for novel targets.
Both the researcher and supervisor have a background in Parkinson disease research. The researcher brings expertise in FUS-MB treatments of mouse models and the supervisor is an expert in preclinical and clinical neuromodulation, the latter with FUS.

Status

SIGNED

Call topic

HORIZON-MSCA-2022-PF-01-01

Update Date

31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2022-PF-01
HORIZON-MSCA-2022-PF-01-01 MSCA Postdoctoral Fellowships 2022