Summary
The continued growth in emissions of greenhouse gases in the atmosphere is a pressing issue for our society. The urgent need for strategies to reduce greenhouses gas concentrations has aroused international action from governments. Carbon capture and storage technologies (CCS) have been considered a key solution to reverse the current CO2 trend because they can mitigate, or at least delay, the alarming greenhouses effects. However, the most effective solution for post-combustion CO2 remains still the chemisorption in aqueous solutions of alkanolamines despite limitations as low selectivity, corrosiveness and high energy requirement for operation and maintenance. Membranes are arguably an attractive technology for CO2 removal from mixed, humid gases as it is a relatively simple technology, that can be easily replaced and requires minimum investment and operation costs. In this regard, mixed-matrix membranes incorporating Metal-Organic Frameworks (MOFs) as crystalline components are an excellent alternative to overcome two of the major limitations of polymer-based membranes: swelling and low selectivity towards CO2.
Among the families of titanium-organic frameworks developed in the ERC Stg grant Chem-fs-MOF (714122), one of our patented materials (MUV-10) represents a significant improvement or meets the specifications of benchmark materials in terms of key properties relevant to CO2 capture in wet conditions as: gravimetric uptake, adsorbate selectivity, energy efficient sorbent regeneration and recyclability in humid environments. With PORECAPTURE we intend now to explore the commercial potential of this material across three main goals that will include: 1. Optimizing its production at multi-gram scale, 2. Fabricating a new generation of membranes for energy efficient CO2 capture that will be tested in operational environments, and 3. Defining an optimal business model strategy that will include validating our know-how with licensors of CCS technologies.
Among the families of titanium-organic frameworks developed in the ERC Stg grant Chem-fs-MOF (714122), one of our patented materials (MUV-10) represents a significant improvement or meets the specifications of benchmark materials in terms of key properties relevant to CO2 capture in wet conditions as: gravimetric uptake, adsorbate selectivity, energy efficient sorbent regeneration and recyclability in humid environments. With PORECAPTURE we intend now to explore the commercial potential of this material across three main goals that will include: 1. Optimizing its production at multi-gram scale, 2. Fabricating a new generation of membranes for energy efficient CO2 capture that will be tested in operational environments, and 3. Defining an optimal business model strategy that will include validating our know-how with licensors of CCS technologies.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101113106 |
Start date: | 01-10-2023 |
End date: | 31-03-2025 |
Total budget - Public funding: | - 150 000,00 Euro |
Cordis data
Original description
The continued growth in emissions of greenhouse gases in the atmosphere is a pressing issue for our society. The urgent need for strategies to reduce greenhouses gas concentrations has aroused international action from governments. Carbon capture and storage technologies (CCS) have been considered a key solution to reverse the current CO2 trend because they can mitigate, or at least delay, the alarming greenhouses effects. However, the most effective solution for post-combustion CO2 remains still the chemisorption in aqueous solutions of alkanolamines despite limitations as low selectivity, corrosiveness and high energy requirement for operation and maintenance. Membranes are arguably an attractive technology for CO2 removal from mixed, humid gases as it is a relatively simple technology, that can be easily replaced and requires minimum investment and operation costs. In this regard, mixed-matrix membranes incorporating Metal-Organic Frameworks (MOFs) as crystalline components are an excellent alternative to overcome two of the major limitations of polymer-based membranes: swelling and low selectivity towards CO2.Among the families of titanium-organic frameworks developed in the ERC Stg grant Chem-fs-MOF (714122), one of our patented materials (MUV-10) represents a significant improvement or meets the specifications of benchmark materials in terms of key properties relevant to CO2 capture in wet conditions as: gravimetric uptake, adsorbate selectivity, energy efficient sorbent regeneration and recyclability in humid environments. With PORECAPTURE we intend now to explore the commercial potential of this material across three main goals that will include: 1. Optimizing its production at multi-gram scale, 2. Fabricating a new generation of membranes for energy efficient CO2 capture that will be tested in operational environments, and 3. Defining an optimal business model strategy that will include validating our know-how with licensors of CCS technologies.
Status
SIGNEDCall topic
ERC-2022-POC2Update Date
31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping