ENSYNC | From engineering to evolution of synthetic cells with RNA origami

Summary
Can we construct a cell from non-living matter? In search for answers, bottom-up synthetic biology has successfully encapsulated functional sets of biomolecules inside lipid vesicles, yet a “living” synthetic cell remains unattained. ENSYNC aims for a prototype of a synthetic cell that encompasses a fundamental characteristic of life, namely evolution. My past work shows that DNA origami can achieve custom-engineered synthetic cellular parts, but the mere encapsulation of preformed parts conflicts with the vision of a self-replicating and evolving synthetic cell. I here propose to produce and to replicate functional RNA origami structures inside of lipid vesicles (GUVs) by co-transcriptional folding from a DNA template. First, I will genetically encode an RNA nanopore and RNA origami structure which induces GUV division. The DNA template (“genotype”) will determine the GUVs’ permeability and their division rate (“phenotype”). This genotype-phenotype mapping is the basis for directed evolution of the rationally engineered RNA origami structures in the second step. In particular, I will aim for efficient GUV division in repeated cycles of genetic diversification and selection. In the third step, I will implement multiple growth and division cycles to enable continuous directed evolution. This will be achieved by system-level integration and laboratory automation of the directed evolution pipeline to iteratively reduce researcher intervention. Depending on externally applied selection pressures, continuous evolution will inevitably lead to the dominance of highly proliferating synthetic cells in mixed populations. ENSYNC provides fundamental insights into evolutionary processes as well as applicable RNA origami-based tools for nanopore sensing and as genetically encoded biophysical probes in cell biology. Overall, ENSYNC pushes the boundaries of bottom-up synthetic biology to the point where synthetic cells can be evolved towards a distinct goal in biotechnology.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101076997
Start date: 01-09-2023
End date: 31-08-2028
Total budget - Public funding: 1 749 624,00 Euro - 1 749 624,00 Euro
Cordis data

Original description

Can we construct a cell from non-living matter? In search for answers, bottom-up synthetic biology has successfully encapsulated functional sets of biomolecules inside lipid vesicles, yet a “living” synthetic cell remains unattained. ENSYNC aims for a prototype of a synthetic cell that encompasses a fundamental characteristic of life, namely evolution. My past work shows that DNA origami can achieve custom-engineered synthetic cellular parts, but the mere encapsulation of preformed parts conflicts with the vision of a self-replicating and evolving synthetic cell. I here propose to produce and to replicate functional RNA origami structures inside of lipid vesicles (GUVs) by co-transcriptional folding from a DNA template. First, I will genetically encode an RNA nanopore and RNA origami structure which induces GUV division. The DNA template (“genotype”) will determine the GUVs’ permeability and their division rate (“phenotype”). This genotype-phenotype mapping is the basis for directed evolution of the rationally engineered RNA origami structures in the second step. In particular, I will aim for efficient GUV division in repeated cycles of genetic diversification and selection. In the third step, I will implement multiple growth and division cycles to enable continuous directed evolution. This will be achieved by system-level integration and laboratory automation of the directed evolution pipeline to iteratively reduce researcher intervention. Depending on externally applied selection pressures, continuous evolution will inevitably lead to the dominance of highly proliferating synthetic cells in mixed populations. ENSYNC provides fundamental insights into evolutionary processes as well as applicable RNA origami-based tools for nanopore sensing and as genetically encoded biophysical probes in cell biology. Overall, ENSYNC pushes the boundaries of bottom-up synthetic biology to the point where synthetic cells can be evolved towards a distinct goal in biotechnology.

Status

SIGNED

Call topic

ERC-2022-STG

Update Date

31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2022-STG ERC STARTING GRANTS
HORIZON.1.1.1 Frontier science
ERC-2022-STG ERC STARTING GRANTS