Summary
"On the framework of the energy transition in Europe, new technologies are under research, development and implementation. One of the targets of the European Commission is by 2030 to achieve a 32% of energy capacity based on renewable sources . Offshore wind energy is one of the renewable energy sources contemplated in the European Strategic Energy Technology Plan (SET Plan) as part of the actions for research and innovation. New potential areas with more intense and stable wind conditions and minimized visual impact on the coastline have been identified (deep waters of >60 m depth). This motivates the idea of implementing floating wind turbines as an alternative to reach deep water locations with a great potential as a step further in the offshore wind industry. One of the main challenges for this technology is the cost associated with the construction of the platforms for the wind turbines and the mooring systems to anchor the turbines in deep water. One of the solutions to optimize offshore floating wind farms costs is sharing the anchors connected to the mooring systems that secure the wind turbines when subjected to the ocean environmental laods. The research proposed here ""Shared anchors for floating wind turbines- ShareWind"", aims to provide design guidelines and evaluate the loading capacity of shared anchors installed in clayey seabed profiles as most of the research on this topic has been adressed in sands. As part of ShareWind, the applicant will (i) develop physical models of shared anchors to be tested at theUniv.Eiffel (France) geotechnical centrifuge, (ii) perform numerical simulations and parametric studies to provide design guidelines and failure envelopes of anchors subjected to multidirectional cyclic loading. The results of ShareWind will be integrated in design frameworks to predict the loading capacity and displacements of shared anchors with impacts in their long-term performance and in the optimization of costs of floating wind farms."
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101106921 |
Start date: | 01-07-2023 |
End date: | 30-06-2025 |
Total budget - Public funding: | - 211 754,00 Euro |
Cordis data
Original description
"On the framework of the energy transition in Europe, new technologies are under research, development and implementation. One of the targets of the European Commission is by 2030 to achieve a 32% of energy capacity based on renewable sources . Offshore wind energy is one of the renewable energy sources contemplated in the European Strategic Energy Technology Plan (SET Plan) as part of the actions for research and innovation. New potential areas with more intense and stable wind conditions and minimized visual impact on the coastline have been identified (deep waters of >60 m depth). This motivates the idea of implementing floating wind turbines as an alternative to reach deep water locations with a great potential as a step further in the offshore wind industry. One of the main challenges for this technology is the cost associated with the construction of the platforms for the wind turbines and the mooring systems to anchor the turbines in deep water. One of the solutions to optimize offshore floating wind farms costs is sharing the anchors connected to the mooring systems that secure the wind turbines when subjected to the ocean environmental laods. The research proposed here ""Shared anchors for floating wind turbines- ShareWind"", aims to provide design guidelines and evaluate the loading capacity of shared anchors installed in clayey seabed profiles as most of the research on this topic has been adressed in sands. As part of ShareWind, the applicant will (i) develop physical models of shared anchors to be tested at theUniv.Eiffel (France) geotechnical centrifuge, (ii) perform numerical simulations and parametric studies to provide design guidelines and failure envelopes of anchors subjected to multidirectional cyclic loading. The results of ShareWind will be integrated in design frameworks to predict the loading capacity and displacements of shared anchors with impacts in their long-term performance and in the optimization of costs of floating wind farms."Status
SIGNEDCall topic
HORIZON-MSCA-2022-PF-01-01Update Date
31-07-2023
Images
No images available.
Geographical location(s)