DITTO | Comprehensive search for new phenomena in the dilepton spectrum at the LHC

Summary
While the Standard Model of particle physics (SM) has proven tremendously successful, experimental evidence points to it not being a complete description of our universe, but a low energy approximation of a more complete theory. The searches for new phenomena (NP) are therefore an important component of the experimental program of the Large Hadron Collider (LHC). While there is no direct evidence for NP at the LHC, measurements of beauty hadron decays display a seemingly coherent pattern of deviations with respect to the SM predictions, which suggest that NP couples differently to three generations of matter. The quark-level processes responsible for these so-called ‘flavor anomalies’ are related to dilepton production processes (Drell-Yan scattering) through the crossing symmetry. The measurements of the kinematics of the high mass Drell-Yan (HMDY) process are therefore uniquely sensitive to a wide variety of NP explanations of the ‘anomalies’.

The goal of this ground-breaking project is to provide for the first time the complete set of world’s most precise HMDY differential cross-section measurements covering not only the light lepton channels ev/μv/ee/µµ, but also extremely challenging third generation τv and ττ, ditau (DITTO), final states. These measurements will be used to probe NP at mass scales beyond the reach of direct production at the LHC through the SM effective field theory framework. The innovative performance and trigger improvements of the DITTO project will allow the ensemble of the proposed measurements to reach maximum precision, boosting the possibility for a NP discovery within the data sets expected to be collected by the ATLAS experiment at the LHC.

Just as dilepton resonances, such as the J/ψ and Y mesons and the Z and W bosons were crucial for the establishment of the SM, the study of the same final state, to be undertaken in the DITTO project, will help to pave the way for a better understanding of the physics processes beyond it.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101089007
Start date: 01-10-2023
End date: 30-09-2028
Total budget - Public funding: 1 999 409,00 Euro - 1 999 409,00 Euro
Cordis data

Original description

While the Standard Model of particle physics (SM) has proven tremendously successful, experimental evidence points to it not being a complete description of our universe, but a low energy approximation of a more complete theory. The searches for new phenomena (NP) are therefore an important component of the experimental program of the Large Hadron Collider (LHC). While there is no direct evidence for NP at the LHC, measurements of beauty hadron decays display a seemingly coherent pattern of deviations with respect to the SM predictions, which suggest that NP couples differently to three generations of matter. The quark-level processes responsible for these so-called ‘flavor anomalies’ are related to dilepton production processes (Drell-Yan scattering) through the crossing symmetry. The measurements of the kinematics of the high mass Drell-Yan (HMDY) process are therefore uniquely sensitive to a wide variety of NP explanations of the ‘anomalies’.

The goal of this ground-breaking project is to provide for the first time the complete set of world’s most precise HMDY differential cross-section measurements covering not only the light lepton channels ev/μv/ee/µµ, but also extremely challenging third generation τv and ττ, ditau (DITTO), final states. These measurements will be used to probe NP at mass scales beyond the reach of direct production at the LHC through the SM effective field theory framework. The innovative performance and trigger improvements of the DITTO project will allow the ensemble of the proposed measurements to reach maximum precision, boosting the possibility for a NP discovery within the data sets expected to be collected by the ATLAS experiment at the LHC.

Just as dilepton resonances, such as the J/ψ and Y mesons and the Z and W bosons were crucial for the establishment of the SM, the study of the same final state, to be undertaken in the DITTO project, will help to pave the way for a better understanding of the physics processes beyond it.

Status

SIGNED

Call topic

ERC-2022-COG

Update Date

31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2022-COG ERC CONSOLIDATOR GRANTS
HORIZON.1.1.1 Frontier science
ERC-2022-COG ERC CONSOLIDATOR GRANTS