Summary
Porous scaffolds (i.e., lattice implants) play an important role in bone regeneration since they can mimic the structure of bone, bond to bone and in some cases stimulate bone growth. To date, most clinically approved porous scaffolds are limited to those fabricated from non-degradable metals. As such, a second surgery is often required to remove them once their purpose is fulfilled. This is often a burden for the patient and results in significantly increased health care costs. Biodegradable Mg alloys can overcome these issues thanks to their ability to dissolve within the human body while being replaced by new bone tissue. The aim of this project is to advance the potential use of Mg alloy porous scaffolds for bone grafting applications. To achieve this aim, the proposed research seeks to fulfil three primary objectives: (1) to design a next generation biomedical Mg-Zn-Ca alloy suitable for laser-powder bed fusion processing (L-PBF) of porous scaffolds; (2) to improve the mechanical and degradation properties beyond those of ‘benchmark’ commercially available biomedical Mg alloys; (3) to incorporate biodegradable polymers into porous Mg-Zn-Ca-based lattices as a means of improving the functionality of the lattice implant. The project seeks to combine the in-depth material knowledge and industrial experience of the Experienced Researcher (ER), with the biomedical expertise, wide subject background and extensive collaboration networks of the supervisor, Cecilia Persson, along with the broad range of infrastructure available at the host organisation, Uppsala University. The interdisciplinary aspect of the proposed research will enable the ER to expand his knowledge in several areas and will substantially improve his career prospects, especially given the supervisor’s excellent track record of training postgraduate and post-doctoral researchers. The host will benefit from the ER’s contributions to its research activities and industrial relevance.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101110609 |
Start date: | 01-05-2023 |
End date: | 30-04-2025 |
Total budget - Public funding: | - 222 727,00 Euro |
Cordis data
Original description
Porous scaffolds (i.e., lattice implants) play an important role in bone regeneration since they can mimic the structure of bone, bond to bone and in some cases stimulate bone growth. To date, most clinically approved porous scaffolds are limited to those fabricated from non-degradable metals. As such, a second surgery is often required to remove them once their purpose is fulfilled. This is often a burden for the patient and results in significantly increased health care costs. Biodegradable Mg alloys can overcome these issues thanks to their ability to dissolve within the human body while being replaced by new bone tissue. The aim of this project is to advance the potential use of Mg alloy porous scaffolds for bone grafting applications. To achieve this aim, the proposed research seeks to fulfil three primary objectives: (1) to design a next generation biomedical Mg-Zn-Ca alloy suitable for laser-powder bed fusion processing (L-PBF) of porous scaffolds; (2) to improve the mechanical and degradation properties beyond those of ‘benchmark’ commercially available biomedical Mg alloys; (3) to incorporate biodegradable polymers into porous Mg-Zn-Ca-based lattices as a means of improving the functionality of the lattice implant. The project seeks to combine the in-depth material knowledge and industrial experience of the Experienced Researcher (ER), with the biomedical expertise, wide subject background and extensive collaboration networks of the supervisor, Cecilia Persson, along with the broad range of infrastructure available at the host organisation, Uppsala University. The interdisciplinary aspect of the proposed research will enable the ER to expand his knowledge in several areas and will substantially improve his career prospects, especially given the supervisor’s excellent track record of training postgraduate and post-doctoral researchers. The host will benefit from the ER’s contributions to its research activities and industrial relevance.Status
SIGNEDCall topic
HORIZON-MSCA-2022-PF-01-01Update Date
31-07-2023
Images
No images available.
Geographical location(s)