OPTIMISTIC | Molecular Spin Interactions in Magnetic Fields of Superconducting Vortices

Summary
Successful implementation of modern quantum technologies is strongly tied to the efficient realization of quantum bits - qubits that promise to revolutionize our current computational and information processing schemes. However, an outstanding challanges concerns the scalability with an expanding number of qubits, making the execution of complex algorithms problematic. In this respect, molecular spin systems are attractive candidates for a scalable qubit platform. The principal idea of the project is to study the behavior and quantum interactions of molecular spin systems exposed to the magnetic fields at the center of Abrikosov vortices in type-II superconductors (BSCCO, YBCO, NbSe2) using state-of-the-art scanning probe microscopy (SPM). This concept promises access to strongly localized magnetic fields of exceptional strength, offering novel perspectives for molecular qubit research, surface science, and material science. The findings will be further utilized to study magnetic ordering in exotic 2D materials (CrBr3, NiI2) exhibiting noncollinear magnetic ordering. The project's novelty lies both in the methodology and research objectives, which will be achieved via a unique synergy of host group expertise in superconducting substrates and preparation of exotic 2D material systems and researcher's know-how in molecular spin systems and magnetic sensing with functionalized SPM tips (metallocene molecules).
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101109672
Start date: 01-01-2024
End date: 31-01-2026
Total budget - Public funding: - 215 534,00 Euro
Cordis data

Original description

Successful implementation of modern quantum technologies is strongly tied to the efficient realization of quantum bits - qubits that promise to revolutionize our current computational and information processing schemes. However, an outstanding challanges concerns the scalability with an expanding number of qubits, making the execution of complex algorithms problematic. In this respect, molecular spin systems are attractive candidates for a scalable qubit platform. The principal idea of the project is to study the behavior and quantum interactions of molecular spin systems exposed to the magnetic fields at the center of Abrikosov vortices in type-II superconductors (BSCCO, YBCO, NbSe2) using state-of-the-art scanning probe microscopy (SPM). This concept promises access to strongly localized magnetic fields of exceptional strength, offering novel perspectives for molecular qubit research, surface science, and material science. The findings will be further utilized to study magnetic ordering in exotic 2D materials (CrBr3, NiI2) exhibiting noncollinear magnetic ordering. The project's novelty lies both in the methodology and research objectives, which will be achieved via a unique synergy of host group expertise in superconducting substrates and preparation of exotic 2D material systems and researcher's know-how in molecular spin systems and magnetic sensing with functionalized SPM tips (metallocene molecules).

Status

SIGNED

Call topic

HORIZON-MSCA-2022-PF-01-01

Update Date

31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2022-PF-01
HORIZON-MSCA-2022-PF-01-01 MSCA Postdoctoral Fellowships 2022