Summary
Colorectal cancer accounted for 12.7% of all new cancer diagnosis and 12.4% of all deaths due to cancer in European Union in 2020. Despite the advances in therapeutics, it is the most recurrent tumors in humans and third common cause of cancer-related deaths worldwide. The current treatment options include chemotherapy, radiation and surgery that are invasive and have side-effects. Also, the 1st and 2nd generation nanocarriers used in cancer therapy consisted of mono-component systems and failed due to lack of targeting molecules, remotely controlled therapeutics window, and patient-specific individualized platforms. The project DIASHUTTLE aims to develop a novel, next-generation, smart, multifunctional and multimodal, hybrid nanotheranostic platform consisting of biosilica extracted from living diatoms for simultaneous diagnosis, treatment, and therapy monitoring of colorectal cancer. It will combine magnetic nanoparticle core, surface deposited metallic gold nanoparticles, tumor targeting biomolecule folic acid, and natural source drug astaxanthin to facilitate different modes of therapy such as magnetically guided or ligand targeted drug delivery, magnetic hyperthermia, and photothermal therapy. It will also concurrently enable different modes of real-time monitoring such as Raman, surface enhanced Raman spectroscopy, magnetic resonance imaging, fluorescence, and photoluminescence. It is expected that the combination of different therapies will exhibit superior synergistic anti-cancer effect over monotherapy and reduce treatment delays by offering a safe and personalized approach to overcome the limitations of conventional cancer treatment. The proposed platform will lead to less toxicity due to the use of targeting molecule and natural materials, controlled drug release, and lower effective drug concentration. Additionally, the nutrient uptake and CO2 sequestration capability of diatoms will support circular bio-economy and self-sustainability.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101106200 |
Start date: | 01-07-2023 |
End date: | 31-12-2025 |
Total budget - Public funding: | - 235 737,00 Euro |
Cordis data
Original description
Colorectal cancer accounted for 12.7% of all new cancer diagnosis and 12.4% of all deaths due to cancer in European Union in 2020. Despite the advances in therapeutics, it is the most recurrent tumors in humans and third common cause of cancer-related deaths worldwide. The current treatment options include chemotherapy, radiation and surgery that are invasive and have side-effects. Also, the 1st and 2nd generation nanocarriers used in cancer therapy consisted of mono-component systems and failed due to lack of targeting molecules, remotely controlled therapeutics window, and patient-specific individualized platforms. The project DIASHUTTLE aims to develop a novel, next-generation, smart, multifunctional and multimodal, hybrid nanotheranostic platform consisting of biosilica extracted from living diatoms for simultaneous diagnosis, treatment, and therapy monitoring of colorectal cancer. It will combine magnetic nanoparticle core, surface deposited metallic gold nanoparticles, tumor targeting biomolecule folic acid, and natural source drug astaxanthin to facilitate different modes of therapy such as magnetically guided or ligand targeted drug delivery, magnetic hyperthermia, and photothermal therapy. It will also concurrently enable different modes of real-time monitoring such as Raman, surface enhanced Raman spectroscopy, magnetic resonance imaging, fluorescence, and photoluminescence. It is expected that the combination of different therapies will exhibit superior synergistic anti-cancer effect over monotherapy and reduce treatment delays by offering a safe and personalized approach to overcome the limitations of conventional cancer treatment. The proposed platform will lead to less toxicity due to the use of targeting molecule and natural materials, controlled drug release, and lower effective drug concentration. Additionally, the nutrient uptake and CO2 sequestration capability of diatoms will support circular bio-economy and self-sustainability.Status
SIGNEDCall topic
HORIZON-MSCA-2022-PF-01-01Update Date
31-07-2023
Images
No images available.
Geographical location(s)