MOSAIC | Building charge-MOSAIC nanofiltration membranes for removing micro-pollutants from surface and drinking water

Summary
Our surface and drinking water sources are increasingly threatened by the presence of organic micropollutants (OMPs). OMPs are small molecules (100-1000 Da) that originate from industrial, agricultural and pharmaceutical residues, and can cause long-term harm to humans and ecosystems. While OMPs can be removed from water with existing membrane technologies (e.g., reverse osmosis), these methods have significant limitations: they are energy-intensive and lead to problematic brine waste streams, due to their low water and salt permeability.

In this project I aim to solve these limitations by building charge-mosaic membranes; membranes with small (nm2) oppositely charged patches that allow coupled passage of negative and positive ions. This design, aimed at reducing salt retention, was conceived over 90 years ago, but was never realized in a scalable manner due to its challenging design. Here, I propose a simple and fully scalable approach to achieve such membranes, using polyelectrolyte multilayers (PEMs) of oppositely charged polymers. I will build these charge-mosaic membranes using ultrathin, ultradense layers in an asymmetric PEM approach to achieve a very high (> 99%) retention of OMPs and a high water permeability.

Combined with state-of-the-art modelling, this project will also provide new fundamental insights into membrane mass transport. Moreover, the project will directly lead to membranes with unique separation properties, allowing the design of completely new processes to effectively remove OMPs from waste water and drinking water.
ter.
Results, demos, etc. Show all and search (0)
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101087309
Start date: 01-09-2023
End date: 31-08-2028
Total budget - Public funding: 2 000 000,00 Euro - 2 000 000,00 Euro
Cordis data

Original description

Our surface and drinking water sources are increasingly threatened by the presence of organic micropollutants (OMPs). OMPs are small molecules (100-1000 Da) that originate from industrial, agricultural and pharmaceutical residues, and can cause long-term harm to humans and ecosystems. While OMPs can be removed from water with existing membrane technologies (e.g., reverse osmosis), these methods have significant limitations: they are energy-intensive and lead to problematic brine waste streams, due to their low water and salt permeability.

In this project I aim to solve these limitations by building charge-mosaic membranes; membranes with small (nm2) oppositely charged patches that allow coupled passage of negative and positive ions. This design, aimed at reducing salt retention, was conceived over 90 years ago, but was never realized in a scalable manner due to its challenging design. Here, I propose a simple and fully scalable approach to achieve such membranes, using polyelectrolyte multilayers (PEMs) of oppositely charged polymers. I will build these charge-mosaic membranes using ultrathin, ultradense layers in an asymmetric PEM approach to achieve a very high (> 99%) retention of OMPs and a high water permeability.

Combined with state-of-the-art modelling, this project will also provide new fundamental insights into membrane mass transport. Moreover, the project will directly lead to membranes with unique separation properties, allowing the design of completely new processes to effectively remove OMPs from waste water and drinking water.
ter.

Status

SIGNED

Call topic

ERC-2022-COG

Update Date

31-07-2023
Images
No images available.
Geographical location(s)