SMARTSENS | SMARTSENS: Smart wear for sensing the neuromusculoskeletal system during human movement in vivo

Summary
Neurological injuries such as stroke or spinal cord injury, leave 5 million people disabled worldwide annually, drastically impairing individuals' ability to move independently. The main element hampering efficacy of current neuro-rehabilitation procedures is the inability of sensing the activity of neural cells involved in the control of movement, along with the movement-generating mechanical force produced by innervated muscle-tendon units, in the intact moving human in vivo.

Current technologies for sensing the neuromusculoskeletal system rely on expensive, large, and bulky sensing devices that can only be used in the highly controlled settings of research laboratories. Therefore, a wearable, rapid-to-wear system that could track function in a person’s motor neuron activity along with associated function in muscle, tendon and joint function would revolutionise current neuro-rehabilitation paradigms.

SMARTSENS proposes a fully wearable, non-invasive solution to monitor a range of clinically relevant neuromuscular parameters, which currently could only be extracted in constrained laboratory settings via lengthy procedures. SMARTSENS enables measuring such information during daily life activities using a sensorised smart wear that is unobstructive and rapid to wear. This will enable continuous monitoring of the human neuromusculoskeletal system, which will disrupt current movement-measuring and diagnostic systems, by enabling causal understanding of the activity of neural and musculoskeletal structures in vivo at a resolution not considered before.
Results, demos, etc. Show all and search (0)
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101113279
Start date: 01-08-2023
End date: 31-01-2025
Total budget - Public funding: - 150 000,00 Euro
Cordis data

Original description

Neurological injuries such as stroke or spinal cord injury, leave 5 million people disabled worldwide annually, drastically impairing individuals' ability to move independently. The main element hampering efficacy of current neuro-rehabilitation procedures is the inability of sensing the activity of neural cells involved in the control of movement, along with the movement-generating mechanical force produced by innervated muscle-tendon units, in the intact moving human in vivo.

Current technologies for sensing the neuromusculoskeletal system rely on expensive, large, and bulky sensing devices that can only be used in the highly controlled settings of research laboratories. Therefore, a wearable, rapid-to-wear system that could track function in a person’s motor neuron activity along with associated function in muscle, tendon and joint function would revolutionise current neuro-rehabilitation paradigms.

SMARTSENS proposes a fully wearable, non-invasive solution to monitor a range of clinically relevant neuromuscular parameters, which currently could only be extracted in constrained laboratory settings via lengthy procedures. SMARTSENS enables measuring such information during daily life activities using a sensorised smart wear that is unobstructive and rapid to wear. This will enable continuous monitoring of the human neuromusculoskeletal system, which will disrupt current movement-measuring and diagnostic systems, by enabling causal understanding of the activity of neural and musculoskeletal structures in vivo at a resolution not considered before.

Status

SIGNED

Call topic

ERC-2022-POC2

Update Date

31-07-2023
Images
No images available.
Geographical location(s)