ONLINE | From light fueled self-oscillators to light communicating material networks

Summary
ONLINE aims to develop new concepts of communication between inanimate materials.

What is meant by communication? In biological context, communication refers to interactive behaviour of one organism affecting the current or future behaviour of another. In the context of bioinspired materials, ONLINE will develop life-like material structures that communicate with each other via physical contact, fluidic medium, or optical beams. These inanimate materials will be coupled to form networks that communicate autonomously through light.

How to make them? The core concept behind the communicative materials is self-oscillatory (self-sustained) motions in light-responsive liquid crystal elastomers (LCEs). Self-oscillation is a responsive structure that can self-sustain its own mechanical motion in a constant energy field. It captures the key concepts of living organisms, i.e., functioning out of thermodynamic equilibrium and energy dissipation. My goal is to scale down the self-oscillator concepts to the micro-scale and realize soft material robots that can communicate.

Why is this important? There exists an increasing need for artificial materials that can interact, alike biological systems. However, all the dynamic features of state-of-the-art responsive materials are based on internal material properties, and making individual materials interact with each other is a huge challenge. ONLINE proposes three new model systems for material communication: (I) Microscopic walker swarm, in which the locomotion and patterns of interactions between individuals can be fully programmed; (II) Cilia array that move cooperatively and self-regulate the fluidics at low Reynolds numbers; (III) Homeostasis-like light-communicating coupled network that provides a full set of tunable parameters to mimic the complexity of biological oscillators.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101076207
Start date: 01-03-2023
End date: 29-02-2028
Total budget - Public funding: 1 495 500,00 Euro - 1 495 500,00 Euro
Cordis data

Original description

ONLINE aims to develop new concepts of communication between inanimate materials.

What is meant by communication? In biological context, communication refers to interactive behaviour of one organism affecting the current or future behaviour of another. In the context of bioinspired materials, ONLINE will develop life-like material structures that communicate with each other via physical contact, fluidic medium, or optical beams. These inanimate materials will be coupled to form networks that communicate autonomously through light.

How to make them? The core concept behind the communicative materials is self-oscillatory (self-sustained) motions in light-responsive liquid crystal elastomers (LCEs). Self-oscillation is a responsive structure that can self-sustain its own mechanical motion in a constant energy field. It captures the key concepts of living organisms, i.e., functioning out of thermodynamic equilibrium and energy dissipation. My goal is to scale down the self-oscillator concepts to the micro-scale and realize soft material robots that can communicate.

Why is this important? There exists an increasing need for artificial materials that can interact, alike biological systems. However, all the dynamic features of state-of-the-art responsive materials are based on internal material properties, and making individual materials interact with each other is a huge challenge. ONLINE proposes three new model systems for material communication: (I) Microscopic walker swarm, in which the locomotion and patterns of interactions between individuals can be fully programmed; (II) Cilia array that move cooperatively and self-regulate the fluidics at low Reynolds numbers; (III) Homeostasis-like light-communicating coupled network that provides a full set of tunable parameters to mimic the complexity of biological oscillators.

Status

SIGNED

Call topic

ERC-2022-STG

Update Date

31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2022-STG ERC STARTING GRANTS
HORIZON.1.1.1 Frontier science
ERC-2022-STG ERC STARTING GRANTS