GLUCO-SCAN | Deuterium labeling of GLUCOse improves magnetic resonance imaging Sensitivity to CANcer metabolism

Summary
The targeted scientific breakthrough of GLUCO-SCAN is the development and clinical evaluation of a disruptive whole-body molecular imaging concept for cancer assessment. The only currently established whole-body molecular imaging device is positron emission tomography (PET). Glucose (Glc)-sensitive PET is widely used in cancer diagnosis and treatment assessment, but has several major limitations: PET involves harmful ionizing radiation, is expensive, not widely available, and cannot differentiate between cancer-specific and normal cellular glucose uptake. These limitations prohibit an even more widespread use of PET, e.g. for screening. We propose a new Magnetic Resonance Imaging (MRI) concept, whole-body deuterium metabolic imaging (DMI) that will overcome these limitations.
Deuteration is a simple chemical procedure with which it is possible to artificially label a broad range of molecules with an equally broad range of potential applications, e.g., targeting Glc metabolism in cancer. After ingestion, this labeled Glc is metabolized in cells and the label is transferred to all metabolic products, which can be tracked by DMI.
Building on our recent preliminary results in Nature Biomed, we propose a combination of novel MRI hardware, dynamic spectroscopic data sampling, deep learning algorithms, and a clinical validation to answer the following three research questions in a 5-year project:
(i) Is DMI a viable alternative for whole-body cancer assessment?
(ii) How is DMI positioned compared to Glc-sensitive PET?
(iii) Can DMI be performed on widely available MRI systems and simultaneous with standard MRI?
GLUCO-SCAN will fill a gap in current medical imaging by offering an alternative for whole-body PET examinations and potentially even for screening of high risk populations. Ultimately, it will pave the way for a new generation of MR scanners with all-in-one whole-body imaging capability that would capture morphologic and molecular information simultaneously.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101088351
Start date: 01-12-2023
End date: 30-11-2028
Total budget - Public funding: 2 495 924,00 Euro - 2 495 924,00 Euro
Cordis data

Original description

The targeted scientific breakthrough of GLUCO-SCAN is the development and clinical evaluation of a disruptive whole-body molecular imaging concept for cancer assessment. The only currently established whole-body molecular imaging device is positron emission tomography (PET). Glucose (Glc)-sensitive PET is widely used in cancer diagnosis and treatment assessment, but has several major limitations: PET involves harmful ionizing radiation, is expensive, not widely available, and cannot differentiate between cancer-specific and normal cellular glucose uptake. These limitations prohibit an even more widespread use of PET, e.g. for screening. We propose a new Magnetic Resonance Imaging (MRI) concept, whole-body deuterium metabolic imaging (DMI) that will overcome these limitations.
Deuteration is a simple chemical procedure with which it is possible to artificially label a broad range of molecules with an equally broad range of potential applications, e.g., targeting Glc metabolism in cancer. After ingestion, this labeled Glc is metabolized in cells and the label is transferred to all metabolic products, which can be tracked by DMI.
Building on our recent preliminary results in Nature Biomed, we propose a combination of novel MRI hardware, dynamic spectroscopic data sampling, deep learning algorithms, and a clinical validation to answer the following three research questions in a 5-year project:
(i) Is DMI a viable alternative for whole-body cancer assessment?
(ii) How is DMI positioned compared to Glc-sensitive PET?
(iii) Can DMI be performed on widely available MRI systems and simultaneous with standard MRI?
GLUCO-SCAN will fill a gap in current medical imaging by offering an alternative for whole-body PET examinations and potentially even for screening of high risk populations. Ultimately, it will pave the way for a new generation of MR scanners with all-in-one whole-body imaging capability that would capture morphologic and molecular information simultaneously.

Status

SIGNED

Call topic

ERC-2022-COG

Update Date

31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2022-COG ERC CONSOLIDATOR GRANTS
HORIZON.1.1.1 Frontier science
ERC-2022-COG ERC CONSOLIDATOR GRANTS