UNVEIL | Revealing the natUre and ideNtity of actiVe sites through structure-depEndent mIcrokinetic modeLing for CO2 electroreduction reaction

Summary
"The present-day chemicals industry heavily depends on fossil fuels, contributing significantly to the concerning rise in global CO2 emissions. However, for transitioning to renewables, large-scale and high energy-density energy storage is needed. The CO2 electroreduction reaction holds promise in this direction, due to its unique ability to convert waste CO2 emissions back into valuable base chemicals at ambient conditions, using renewable electricity. However, it currently lacks industrial adoption, due to the lack of highly selective and stable catalysts. Understanding the catalytic properties such as selectivity and stability at the atomic scale requires fundamental insights about the ""real"" catalyst structure under reaction conditions and its effects on the reaction mechanisms. The goal of this project is to investigate this structure sensitivity of the Cu-based CO2 electroreduction reaction by developing a structure-dependent microkinetic model. To achieve this, I will use Boltzmann statistics and DFT calculations to predict ensembles of Cu nanoparticles with thermodynamically most stable morphologies under experimental reaction conditions and account for the respective distribution of active sites. Thereafter, the reaction pathways towards key products such as hydrogen, methane and ethylene over the active sites will be investigated. The multiscale analysis based on the structure-dependent microkinetic modeling will connect the experimentally observed macroscopic reaction rates with the nanoscale true structure of the catalyst, revealing the structure-property relationships of the CO2 electroreduction catalyst. The potential outcomes are: 1) understanding how catalyst structure at the nanoscale affects its properties in the CO2 electroreduction process; 2) achieving a wider adoption of multiscale modelling as a tool for rational electrocatalyst design; and 3) establishing stronger collaborations between experimental and theoretical catalysis."
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101106487
Start date: 16-12-2023
End date: 15-12-2025
Total budget - Public funding: - 188 590,00 Euro
Cordis data

Original description

"The present-day chemicals industry heavily depends on fossil fuels, contributing significantly to the concerning rise in global CO2 emissions. However, for transitioning to renewables, large-scale and high energy-density energy storage is needed. The CO2 electroreduction reaction holds promise in this direction, due to its unique ability to convert waste CO2 emissions back into valuable base chemicals at ambient conditions, using renewable electricity. However, it currently lacks industrial adoption, due to the lack of highly selective and stable catalysts. Understanding the catalytic properties such as selectivity and stability at the atomic scale requires fundamental insights about the ""real"" catalyst structure under reaction conditions and its effects on the reaction mechanisms. The goal of this project is to investigate this structure sensitivity of the Cu-based CO2 electroreduction reaction by developing a structure-dependent microkinetic model. To achieve this, I will use Boltzmann statistics and DFT calculations to predict ensembles of Cu nanoparticles with thermodynamically most stable morphologies under experimental reaction conditions and account for the respective distribution of active sites. Thereafter, the reaction pathways towards key products such as hydrogen, methane and ethylene over the active sites will be investigated. The multiscale analysis based on the structure-dependent microkinetic modeling will connect the experimentally observed macroscopic reaction rates with the nanoscale true structure of the catalyst, revealing the structure-property relationships of the CO2 electroreduction catalyst. The potential outcomes are: 1) understanding how catalyst structure at the nanoscale affects its properties in the CO2 electroreduction process; 2) achieving a wider adoption of multiscale modelling as a tool for rational electrocatalyst design; and 3) establishing stronger collaborations between experimental and theoretical catalysis."

Status

SIGNED

Call topic

HORIZON-MSCA-2022-PF-01-01

Update Date

31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2022-PF-01
HORIZON-MSCA-2022-PF-01-01 MSCA Postdoctoral Fellowships 2022