EMMA | Exploring the molecular grammar of IDP assembly and condensation at ultra-high throughput

Summary
The last years have seen unprecedented breakthroughs in protein structural biology, with the resolution revolution in cryo-electron microscopy and the release of AlphaFold. The combination of advanced experimental structural biology, machine learning algorithms and molecular simulations has put the fully quantitative description of how the structure and interactions of folded proteins are defined by their amino acid sequence within close reach.
This leaves us with a final frontier in protein science, namely to achieve a similar level of understanding for intrinsically disordered proteins (IDPs). The energy landscapes of IDPs often comprise a multitude of nearly isoenergetic states, that include assembled forms, such as amyloid fibrils and liquid condensate droplets.
Much effort has been spent in order to achieve an understanding of the molecular grammar of IDP assembly and condensation, i.e. how amino acid sequence defines both kinetics and thermodynamics of these processes. Current state of the art is to evaluate a few dozens of sequence perturbations quantitatively in vitro.
In EMMA, I propose to develop a fundamentally new approach that will ultimately allow to improve on current methods by more than 8 orders of magnitude. This ground-breaking improvement will be achieved by exploiting the power of mRNA display, in which the biophysical behavior of each individual sequence within large libraries of protein-mRNA constructs can be evaluated in a “one pot” reaction. We will combine quantitative screening of the energetics of liquid condensate droplet formation of up to 10^10 sequences by mRNA display with a multiparametric biophysical toolbox that allows the key thermodynamic and kinetic parameters of binding and assembly to be evaluated for thousands of selected sequence variants.
EMMA will transform our ability to probe the mechanisms and interrelationships of the interactions and assembly processes that define IDP function and disease-related malfunction.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101088163
Start date: 01-06-2023
End date: 31-05-2028
Total budget - Public funding: 1 995 554,00 Euro - 1 995 554,00 Euro
Cordis data

Original description

The last years have seen unprecedented breakthroughs in protein structural biology, with the resolution revolution in cryo-electron microscopy and the release of AlphaFold. The combination of advanced experimental structural biology, machine learning algorithms and molecular simulations has put the fully quantitative description of how the structure and interactions of folded proteins are defined by their amino acid sequence within close reach.
This leaves us with a final frontier in protein science, namely to achieve a similar level of understanding for intrinsically disordered proteins (IDPs). The energy landscapes of IDPs often comprise a multitude of nearly isoenergetic states, that include assembled forms, such as amyloid fibrils and liquid condensate droplets.
Much effort has been spent in order to achieve an understanding of the molecular grammar of IDP assembly and condensation, i.e. how amino acid sequence defines both kinetics and thermodynamics of these processes. Current state of the art is to evaluate a few dozens of sequence perturbations quantitatively in vitro.
In EMMA, I propose to develop a fundamentally new approach that will ultimately allow to improve on current methods by more than 8 orders of magnitude. This ground-breaking improvement will be achieved by exploiting the power of mRNA display, in which the biophysical behavior of each individual sequence within large libraries of protein-mRNA constructs can be evaluated in a “one pot” reaction. We will combine quantitative screening of the energetics of liquid condensate droplet formation of up to 10^10 sequences by mRNA display with a multiparametric biophysical toolbox that allows the key thermodynamic and kinetic parameters of binding and assembly to be evaluated for thousands of selected sequence variants.
EMMA will transform our ability to probe the mechanisms and interrelationships of the interactions and assembly processes that define IDP function and disease-related malfunction.

Status

SIGNED

Call topic

ERC-2022-COG

Update Date

31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2022-COG ERC CONSOLIDATOR GRANTS
HORIZON.1.1.1 Frontier science
ERC-2022-COG ERC CONSOLIDATOR GRANTS