Summary
GNSS-R is a technique to carry out Earth observation based on reflections on the ground (or sea, or ice) of signals originating from GNSS (Global Navigation Satellite System) signals. The proposed project consists of educating a new generation of experts, at doctoral level, able to bring a qualitative leap to this technology. The scientific and technological goal consists of developing such systems based on a synchronized constellation of Cubesats. An important advantage of this arrangement is the very low cost of cubesats and the possibility to increase resolution based on beamforming from the satellites. Ground truth, as well as some of the methods, will originate from near-field radar technology. This will require further research on all segments of GNSS-R technology and beyond: launching and adjustment of cubesat formations, RF synchronization, interferometry between moving platforms, calibration of RF front-ends, ground testing making use of drones, cubesat systems, on-board processing, data transfer and analysis, translation into ground truth and into predictions important for climate change studies and for optimal territory management. The project may also benefit to other technologies making use of interferometry, such as radio-astronomy and phased array based communications. It is also expected to assist industry segments making use of GNSS signals, such as precision agriculture, forestry and sea and land management.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101120117 |
Start date: | 01-03-2024 |
End date: | 29-02-2028 |
Total budget - Public funding: | - 2 667 448,00 Euro |
Cordis data
Original description
GNSS-R is a technique to carry out Earth observation based on reflections on the ground (or sea, or ice) of signals originating from GNSS (Global Navigation Satellite System) signals. The proposed project consists of educating a new generation of experts, at doctoral level, able to bring a qualitative leap to this technology. The scientific and technological goal consists of developing such systems based on a synchronized constellation of Cubesats. An important advantage of this arrangement is the very low cost of cubesats and the possibility to increase resolution based on beamforming from the satellites. Ground truth, as well as some of the methods, will originate from near-field radar technology. This will require further research on all segments of GNSS-R technology and beyond: launching and adjustment of cubesat formations, RF synchronization, interferometry between moving platforms, calibration of RF front-ends, ground testing making use of drones, cubesat systems, on-board processing, data transfer and analysis, translation into ground truth and into predictions important for climate change studies and for optimal territory management. The project may also benefit to other technologies making use of interferometry, such as radio-astronomy and phased array based communications. It is also expected to assist industry segments making use of GNSS signals, such as precision agriculture, forestry and sea and land management.Status
SIGNEDCall topic
HORIZON-MSCA-2022-DN-01-01Update Date
31-07-2023
Images
No images available.
Geographical location(s)