CoTransComplex | Mechanisms of co-translational assembly of multi-protein complexes

Summary
Most proteins function within larger complexes. How these intricate structures are correctly formed is poorly understood, yet critical to all cellular processes and pathological conditions. Recent breakthroughs suggest that multi-protein complexes form co-translationally, by super-assemblies of multiple ribosomes and other cofactors that are coordinated in time and space. This striking notion contrasts starkly with textbook models and is key to the possibilities and failures of complex formation. However, owing to technical limitations, the mechanisms and scope of actively coordinated protein assembly are poorly understood.
Elucidating how these large and transient co-translational formations produce protein complexes throughout the genome is a next-level challenge that cannot be addressed by a single discipline. We propose a unique merging of cutting-edge approaches: 1) Ribosomal profiling to detect interactions between ribosomes engaged in assembly and cofactors genome-wide, 2) Single-molecule force spectroscopy and super-resolution imaging to reveal ribosome movements and nascent chain assembly. 3) Cryo-EM and tomography to elucidate the structural basis of ribosome interactions that enable direct assembly.
Our program addresses 1) the coordination of multiple ribosomes in time and space, 2) the folding and assembly of nascent chains, and guidance by chaperones and novel cofactors, 3) the major protein complexes classes of homo-dimers, higher-order oligomers, hetero-dimers, and complexes formed at membranes. This ambitious program will provide insight of unprecedented detail and scope, spanning from the cellular to the atomic level, from in vivo to in vitro, from genome-wide patterns to molecular mechanisms, and from bacteria to human cells. It will impact a vast spectrum of protein complexes, reveal unknown layers of control in protein biogenesis, with implications for ribosome quality control, artificial protein design, and mechanisms of disease.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101072047
Start date: 01-04-2023
End date: 31-03-2029
Total budget - Public funding: 9 458 525,00 Euro - 9 458 525,00 Euro
Cordis data

Original description

Most proteins function within larger complexes. How these intricate structures are correctly formed is poorly understood, yet critical to all cellular processes and pathological conditions. Recent breakthroughs suggest that multi-protein complexes form co-translationally, by super-assemblies of multiple ribosomes and other cofactors that are coordinated in time and space. This striking notion contrasts starkly with textbook models and is key to the possibilities and failures of complex formation. However, owing to technical limitations, the mechanisms and scope of actively coordinated protein assembly are poorly understood.
Elucidating how these large and transient co-translational formations produce protein complexes throughout the genome is a next-level challenge that cannot be addressed by a single discipline. We propose a unique merging of cutting-edge approaches: 1) Ribosomal profiling to detect interactions between ribosomes engaged in assembly and cofactors genome-wide, 2) Single-molecule force spectroscopy and super-resolution imaging to reveal ribosome movements and nascent chain assembly. 3) Cryo-EM and tomography to elucidate the structural basis of ribosome interactions that enable direct assembly.
Our program addresses 1) the coordination of multiple ribosomes in time and space, 2) the folding and assembly of nascent chains, and guidance by chaperones and novel cofactors, 3) the major protein complexes classes of homo-dimers, higher-order oligomers, hetero-dimers, and complexes formed at membranes. This ambitious program will provide insight of unprecedented detail and scope, spanning from the cellular to the atomic level, from in vivo to in vitro, from genome-wide patterns to molecular mechanisms, and from bacteria to human cells. It will impact a vast spectrum of protein complexes, reveal unknown layers of control in protein biogenesis, with implications for ribosome quality control, artificial protein design, and mechanisms of disease.

Status

SIGNED

Call topic

ERC-2022-SyG

Update Date

31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2022-SyG ERC Synergy Grants
HORIZON.1.1.1 Frontier science
ERC-2022-SyG ERC Synergy Grants