BioLaMer | Proof of principle fly larvae biorefinery for biopolymer plastic production

Summary
Management of food waste (FW) and petroleum plastics pollution are two significant global challenges. Developing biopolymers and added-value bioplastic products from low-grade FW is, thus, a key enabler to tackle both issues. Despite extensive R&D efforts to valorise waste streams including FW to bioplastics, the widespread market penetration of bioplastics is hindered due to their high production cost.

BioLaMer aims to demonstrate a novel proof of principle fly larvae biorefinery by establishing food eating black soldier fly larvae (Hermetia illucens) as a high impact feedstock for cost-effective production of two biopolymers, polyhydroxyalkanoates (PHA) and chitosan. The advantages of the larvae route are that it: i) is renewable and inexpensive; ii) provides less complexity as the larvae has invariable chemical composition; iii) can be used to mitigate the FW problem; iv) can reduce raw material inputs, thus minimizing energy utilization; v) doesn’t disturb the biodiversity; and vi) can avoid/reduce pre-treatment costs associated with the waste-streams to produce the platform chemicals for biopolymer production.

The innovative BioLaMer biorefinery will improve the bioreactor process efficiency and cut down the PHA production cost significantly compared to existing technologies. BioLaMer will combine its conceptual innovations, complementary interdisciplinary expertise and bioreactor process expertise to develop cost-effective PHA and chitosan production technologies, supported by life cycle thinking/analysis and hybrid models developed using machine learning platform. Further, the significant environmental, economic, and societal impacts (that supports the EU Circular Economy, Green Deal, Food Waste, and Plastic strategies/initiatives) of BioLaMer will be demonstrated through the involvement of SSH, communication and circularity demonstration partners.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101099487
Start date: 01-04-2023
End date: 31-03-2026
Total budget - Public funding: 2 971 050,00 Euro - 2 956 825,00 Euro
Cordis data

Original description

Management of food waste (FW) and petroleum plastics pollution are two significant global challenges. Developing biopolymers and added-value bioplastic products from low-grade FW is, thus, a key enabler to tackle both issues. Despite extensive R&D efforts to valorise waste streams including FW to bioplastics, the widespread market penetration of bioplastics is hindered due to their high production cost.

BioLaMer aims to demonstrate a novel proof of principle fly larvae biorefinery by establishing food eating black soldier fly larvae (Hermetia illucens) as a high impact feedstock for cost-effective production of two biopolymers, polyhydroxyalkanoates (PHA) and chitosan. The advantages of the larvae route are that it: i) is renewable and inexpensive; ii) provides less complexity as the larvae has invariable chemical composition; iii) can be used to mitigate the FW problem; iv) can reduce raw material inputs, thus minimizing energy utilization; v) doesn’t disturb the biodiversity; and vi) can avoid/reduce pre-treatment costs associated with the waste-streams to produce the platform chemicals for biopolymer production.

The innovative BioLaMer biorefinery will improve the bioreactor process efficiency and cut down the PHA production cost significantly compared to existing technologies. BioLaMer will combine its conceptual innovations, complementary interdisciplinary expertise and bioreactor process expertise to develop cost-effective PHA and chitosan production technologies, supported by life cycle thinking/analysis and hybrid models developed using machine learning platform. Further, the significant environmental, economic, and societal impacts (that supports the EU Circular Economy, Green Deal, Food Waste, and Plastic strategies/initiatives) of BioLaMer will be demonstrated through the involvement of SSH, communication and circularity demonstration partners.

Status

SIGNED

Call topic

HORIZON-EIC-2022-PATHFINDEROPEN-01-01

Update Date

31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.3 Innovative Europe
HORIZON.3.1 The European Innovation Council (EIC)
HORIZON.3.1.0 Cross-cutting call topics
HORIZON-EIC-2022-PATHFINDEROPEN-01
HORIZON-EIC-2022-PATHFINDEROPEN-01-01 EIC Pathfinder Open 2022