Summary
Traditionally, monitoring of organs and deep body functional imaging is done by ultrasound, X-Rays (incl CT), PET or MRI. These techniques only allow for very limited measurements of functionality, usually combined with exogenous and radioactive agents. In this project we propose an innovative light sensing solution, a fast gated, ultra-high quantum efficiency single-photon sensor, to enable multi-functional deep body imaging with diffuse optics. The new type of sensor is based on superconducting nanowire single-photon detectors, that have shown to be ultra-fast and highly efficient. However, until now the active area and number of pixels has been limited to micrometers diameter and tens of pixels. We propose the combination of two new readout techniques, optical gating and charge coupling, to overcome this limit and scale to 10,000 pixels and millimeter diameter. In addition we will develop new strategies for performing TD-NIRS and TD-SCOS to use this new light sensor optimally with Monte-Carlo simulations. We will implement the new light sensor in an optical tomograph and achieve a 100x improvement of SNR compared to using existing light sensors. With our proposed Multifunctional Optical Tomograph we will be able to image deep organ and optical structures and monitor functions including oxygenation, haemodynamics, perfusion and metabolism
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101099291 |
Start date: | 01-04-2023 |
End date: | 31-03-2027 |
Total budget - Public funding: | 2 495 508,75 Euro - 2 495 508,00 Euro |
Cordis data
Original description
Traditionally, monitoring of organs and deep body functional imaging is done by ultrasound, X-Rays (incl CT), PET or MRI. These techniques only allow for very limited measurements of functionality, usually combined with exogenous and radioactive agents. In this project we propose an innovative light sensing solution, a fast gated, ultra-high quantum efficiency single-photon sensor, to enable multi-functional deep body imaging with diffuse optics. The new type of sensor is based on superconducting nanowire single-photon detectors, that have shown to be ultra-fast and highly efficient. However, until now the active area and number of pixels has been limited to micrometers diameter and tens of pixels. We propose the combination of two new readout techniques, optical gating and charge coupling, to overcome this limit and scale to 10,000 pixels and millimeter diameter. In addition we will develop new strategies for performing TD-NIRS and TD-SCOS to use this new light sensor optimally with Monte-Carlo simulations. We will implement the new light sensor in an optical tomograph and achieve a 100x improvement of SNR compared to using existing light sensors. With our proposed Multifunctional Optical Tomograph we will be able to image deep organ and optical structures and monitor functions including oxygenation, haemodynamics, perfusion and metabolismStatus
SIGNEDCall topic
HORIZON-EIC-2022-PATHFINDEROPEN-01-01Update Date
31-07-2023
Images
No images available.
Geographical location(s)