Summary
Silicon-based CMOS technology is approaching its performance limits, but the demand for more powerful computers — driven by rapid advances in applications such as the Internet of Things, big data and artificial intelligence (AI) — remains. The discovery of various nanomaterials provides new opportunities to further develop information processing technology. Carbon nanotubes (CNTs) have, in particular, demonstrated excellent properties as a channel material in transistors. Computers based on CNT field-effect transistors (FETs) have been theoretically predicted to provide a power-performance improvement of ten times over computers based on Si-CMOS technology. However, the fabrication of high-performance CNT-nanoelectronics, and the realization of the full potential of CNTs, is highly challenging. A technological revolution would be a reliable approach to fabricate a new family of CNT-based devices that could enable aligned arrangement of the nanotubes avoiding the critical steps related to nanolithography. In particular, biofabrication using DNA-templated CNT arrays FETs has been demonstrated to further scale the alignment of CNTs within the FETs well beyond standard lithographic feasibility. 3D-BRICKS will raise this concept of integrated self-assembly CNT-nanocircuits to a completely new level by moving towards the third dimension. Indeed, the versatility of DNA nanotechnology will be the root for conceiving 3-dimensional (3D) CNT-FETs and CNT-nonvolatile memories. DNA nanotechnology will also enable to complement the CNT deposition with metallic connections, hence realizing a working circuit. This will reduce the foot-print of the final device while enhancing its efficiency, hence providing a breakthrough solution to realize the next-generation nanoelectronics. Our approach will enable the production of scalable biotemplated electronics that can be extended to multiple applications such as metamaterials, sensors, optoelectronics, and others.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101099125 |
Start date: | 01-05-2023 |
End date: | 30-04-2026 |
Total budget - Public funding: | 2 975 258,75 Euro - 2 975 258,00 Euro |
Cordis data
Original description
Silicon-based CMOS technology is approaching its performance limits, but the demand for more powerful computers — driven by rapid advances in applications such as the Internet of Things, big data and artificial intelligence (AI) — remains. The discovery of various nanomaterials provides new opportunities to further develop information processing technology. Carbon nanotubes (CNTs) have, in particular, demonstrated excellent properties as a channel material in transistors. Computers based on CNT field-effect transistors (FETs) have been theoretically predicted to provide a power-performance improvement of ten times over computers based on Si-CMOS technology. However, the fabrication of high-performance CNT-nanoelectronics, and the realization of the full potential of CNTs, is highly challenging. A technological revolution would be a reliable approach to fabricate a new family of CNT-based devices that could enable aligned arrangement of the nanotubes avoiding the critical steps related to nanolithography. In particular, biofabrication using DNA-templated CNT arrays FETs has been demonstrated to further scale the alignment of CNTs within the FETs well beyond standard lithographic feasibility. 3D-BRICKS will raise this concept of integrated self-assembly CNT-nanocircuits to a completely new level by moving towards the third dimension. Indeed, the versatility of DNA nanotechnology will be the root for conceiving 3-dimensional (3D) CNT-FETs and CNT-nonvolatile memories. DNA nanotechnology will also enable to complement the CNT deposition with metallic connections, hence realizing a working circuit. This will reduce the foot-print of the final device while enhancing its efficiency, hence providing a breakthrough solution to realize the next-generation nanoelectronics. Our approach will enable the production of scalable biotemplated electronics that can be extended to multiple applications such as metamaterials, sensors, optoelectronics, and others.Status
SIGNEDCall topic
HORIZON-EIC-2022-PATHFINDEROPEN-01-01Update Date
31-07-2023
Images
No images available.
Geographical location(s)