Summary
BIOACTION aims at developing a new methodology in implant technology based on functionalized bio-hydrogels that will convert the negative occurrence of biofilm-associated infections, the primary cause of implant infections and failure, into a positive resource. The main goal of BIOACTION is to transform implant-associated bacteria for the programmable production of specific proteins for in vivo cell recruitment and tissue regeneration, exploiting gene sequences loaded on engineered liposomes and phages, bound to hydrogel scaffolds. BIOACTION will develop new biomimetic substrates that can transform biofilm into extracellular matrix for the regeneration of target tissues. It will establish a high versatile technology to be used as injectable materials and implant coatings for periodontal and peri-implant infection treatments. The proposed approach will be validated in two clinically relevant animal models: dental implant and permanent transcutaneous bone.
BIOACTION, would radically advance the future of infection treatment by revolutionizing the classical approaches leading to the improvement of state of care, health outcomes and to achieve huge socio-economic benefits. The project isstrongly interdisciplinary in nature involving expertise biomaterials, synthetic biology, phage and liposome technology, medicine.
As a results, this innovative approach will bring the research and knowledge far beyond the current state-of-the-art and will lead, through the planned validation, as proof-of-concept of new materials and technique with a broader application in regenerative medicine.
BIOACTION, would radically advance the future of infection treatment by revolutionizing the classical approaches leading to the improvement of state of care, health outcomes and to achieve huge socio-economic benefits. The project isstrongly interdisciplinary in nature involving expertise biomaterials, synthetic biology, phage and liposome technology, medicine.
As a results, this innovative approach will bring the research and knowledge far beyond the current state-of-the-art and will lead, through the planned validation, as proof-of-concept of new materials and technique with a broader application in regenerative medicine.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101098972 |
Start date: | 01-04-2023 |
End date: | 31-03-2027 |
Total budget - Public funding: | 2 903 862,50 Euro - 2 903 862,00 Euro |
Cordis data
Original description
BIOACTION aims at developing a new methodology in implant technology based on functionalized bio-hydrogels that will convert the negative occurrence of biofilm-associated infections, the primary cause of implant infections and failure, into a positive resource. The main goal of BIOACTION is to transform implant-associated bacteria for the programmable production of specific proteins for in vivo cell recruitment and tissue regeneration, exploiting gene sequences loaded on engineered liposomes and phages, bound to hydrogel scaffolds. BIOACTION will develop new biomimetic substrates that can transform biofilm into extracellular matrix for the regeneration of target tissues. It will establish a high versatile technology to be used as injectable materials and implant coatings for periodontal and peri-implant infection treatments. The proposed approach will be validated in two clinically relevant animal models: dental implant and permanent transcutaneous bone.BIOACTION, would radically advance the future of infection treatment by revolutionizing the classical approaches leading to the improvement of state of care, health outcomes and to achieve huge socio-economic benefits. The project isstrongly interdisciplinary in nature involving expertise biomaterials, synthetic biology, phage and liposome technology, medicine.
As a results, this innovative approach will bring the research and knowledge far beyond the current state-of-the-art and will lead, through the planned validation, as proof-of-concept of new materials and technique with a broader application in regenerative medicine.
Status
SIGNEDCall topic
HORIZON-EIC-2022-PATHFINDEROPEN-01-01Update Date
31-07-2023
Images
No images available.
Geographical location(s)