BAYFLEX | BAYesian Inference with FLEXible electronics for biomedical Applications

Summary
The long term vision in BAYFLEX is to create a radically new technology that uses low cost, green organic electronics for probabilistic computing in order to allow continuous and private monitoring of bio-signals on flexible substrates. The vision of flexible green AI sensors with on chip classification extends well beyond biomedical devices and the democratization of health care, with the possibility to transform sensor data at the edge of large networks. To achieve our goal, BAYFLEX will demonstrate a patch using active physiological sensors based on organic materials that interface with the soft human body and that also includes classification circuits (~ 100 transistors) fabricated using Thin Organic Large Area Electronics (TOLAE) processes. These circuits use spiking neurons realized in Organic Thin Film Transistors (OTFTs) to transform the non-stationary electrical signals from the sensors into stochastic bit streams. Bayesian inference is then used to classify the data using circuits of cascaded Muller C-elements. Taking advantage of the unique properties of organic electrochemical transistors (OECTs), low transistor count dynamic Muller C-elements are targeted. The patch will be tested on a simple task using healthy humans. The project brings together an interdisciplinary consortium with expertise in modeling emerging devices, biologically inspired circuit design, experts in machine learning involving electrophysiological data (including an SME) and teams with expertise in OTFT and OECT fabrication. BAYFLEX targets dissemination to a variety of publics including: scientists via publications in (open access) high impact journals and conferences; industrials and end-users through an industrial advisory board, a workshop and demonstrations at targeted conferences; the general public with the creation of a transferable workshop for non-scientific communities and training the next generation of experts through specialized schools and workshops.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101099555
Start date: 01-04-2023
End date: 30-09-2026
Total budget - Public funding: 3 204 941,50 Euro - 3 204 941,00 Euro
Cordis data

Original description

The long term vision in BAYFLEX is to create a radically new technology that uses low cost, green organic electronics for probabilistic computing in order to allow continuous and private monitoring of bio-signals on flexible substrates. The vision of flexible green AI sensors with on chip classification extends well beyond biomedical devices and the democratization of health care, with the possibility to transform sensor data at the edge of large networks. To achieve our goal, BAYFLEX will demonstrate a patch using active physiological sensors based on organic materials that interface with the soft human body and that also includes classification circuits (~ 100 transistors) fabricated using Thin Organic Large Area Electronics (TOLAE) processes. These circuits use spiking neurons realized in Organic Thin Film Transistors (OTFTs) to transform the non-stationary electrical signals from the sensors into stochastic bit streams. Bayesian inference is then used to classify the data using circuits of cascaded Muller C-elements. Taking advantage of the unique properties of organic electrochemical transistors (OECTs), low transistor count dynamic Muller C-elements are targeted. The patch will be tested on a simple task using healthy humans. The project brings together an interdisciplinary consortium with expertise in modeling emerging devices, biologically inspired circuit design, experts in machine learning involving electrophysiological data (including an SME) and teams with expertise in OTFT and OECT fabrication. BAYFLEX targets dissemination to a variety of publics including: scientists via publications in (open access) high impact journals and conferences; industrials and end-users through an industrial advisory board, a workshop and demonstrations at targeted conferences; the general public with the creation of a transferable workshop for non-scientific communities and training the next generation of experts through specialized schools and workshops.

Status

SIGNED

Call topic

HORIZON-EIC-2022-PATHFINDEROPEN-01-01

Update Date

31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.3 Innovative Europe
HORIZON.3.1 The European Innovation Council (EIC)
HORIZON.3.1.0 Cross-cutting call topics
HORIZON-EIC-2022-PATHFINDEROPEN-01
HORIZON-EIC-2022-PATHFINDEROPEN-01-01 EIC Pathfinder Open 2022