ReZilient | Redox-mediated hybrid zinc-air flow batteries for more resilient integrated power systems

Summary
The penetration of renewable energies into the electric grid increases the demand for energy storage to ensure reliable power supply, grid resiliency, and cost reductions. Long-duration and long-term energy storage (LDES and LTES) can bridge the intermittency of renewable sources and reduce the risks incurred by diminished fossil-fuel baseload generation. Electrochemical energy storage (EES), or Li-ion batteries (LIBs), are considered for short-duration energy storage (4-6 hours). When talking about seasonal storage, hydrogen storage is usually the preferable option.

The goal of ReZilient is to fill the gap between short-term EES and long-term hydrogen storage by developing and demonstrating at lab-scale (0.5-1.5kW/6kWh) a completely new Zn-air flow battery technology. The estimated capital cost for large-scale deployment is approximately 80 €/kWh, with a levelized-cost-of-storage
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101115535
Start date: 01-10-2023
End date: 30-09-2027
Total budget - Public funding: 3 998 856,25 Euro - 3 998 856,00 Euro
Cordis data

Original description

The penetration of renewable energies into the electric grid increases the demand for energy storage to ensure reliable power supply, grid resiliency, and cost reductions. Long-duration and long-term energy storage (LDES and LTES) can bridge the intermittency of renewable sources and reduce the risks incurred by diminished fossil-fuel baseload generation. Electrochemical energy storage (EES), or Li-ion batteries (LIBs), are considered for short-duration energy storage (4-6 hours). When talking about seasonal storage, hydrogen storage is usually the preferable option.

The goal of ReZilient is to fill the gap between short-term EES and long-term hydrogen storage by developing and demonstrating at lab-scale (0.5-1.5kW/6kWh) a completely new Zn-air flow battery technology. The estimated capital cost for large-scale deployment is approximately 80 €/kWh, with a levelized-cost-of-storage

Status

SIGNED

Call topic

HORIZON-EIC-2022-PATHFINDERCHALLENGES-01-02

Update Date

31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.3 Innovative Europe
HORIZON.3.1 The European Innovation Council (EIC)
HORIZON.3.1.0 Cross-cutting call topics
HORIZON-EIC-2022-PATHFINDERCHALLENGES-01
HORIZON-EIC-2022-PATHFINDERCHALLENGES-01-02 EIC Pathfinder Challenge: Mid to long term and systems integrated energy storage
HORIZON-EIC-2022-PATHFINDERCHALLENGES-01
HORIZON-EIC-2022-PATHFINDERCHALLENGES-01-02 EIC Pathfinder Challenge: Mid to long term and systems integrated energy storage