Summary
For space missions both Photovoltaic (PV) cells and Radioisotope Thermoelectrical Generators (RTG), fueled by Plutonium 238 (Pu-238) are used to produce electricity to power missions. From a European point of view, this has several drawbacks, as neither Pu-238 or any RTGs are produced in Europe and RTGs are very power inefficient, with a yield often of 5% of the fuel potential. This means that large amounts of fuel, and large RTGs, are needed to power missions, which increases the payloads.
PULSAR is the first step on a European path to resolve these issues and take a world leading role in powering space exploration.
The PULSAR project has two overarching global ambitions. These are;
• Develop, in Europe, the building blocks to establish the complete end-to-end capability to produce Pu-238 to help power existing Radioisotope Thermoelectric Generators (RTG) and Radioisotope Heater Units (RHUs) from the constituent elements to module production – addressing critical & non-dependencies technology needs;
• Disruptively increase the thermo-electrical conversion efficiency of dynamic Radioisotope Power Systems (RPS) with an advanced Stirling engine improving the performance of the ”state-of-practice” thermoelectric materials.
This will be achieved by
-Performing first designs and studies for selecting targets for Pu-238 generation, examine fabrication constraints and separation options
-Designing a new welding methodology for iridium encapsulation by laser welding and produce a prototype capsule.
-Designing and evaluating a robust Stirling convertor for use as an RPS
-Addressing the regulatory and safety framework for Pu-238 use in space travel
-Performing an analysis of the market potential and its segmentation for PULSAR results
PULSAR brings together a uniquely placed consortium led by TRACTEBEL, with the support of JRC, ESA and Ariane group.
PULSAR is the first step on a European path to resolve these issues and take a world leading role in powering space exploration.
The PULSAR project has two overarching global ambitions. These are;
• Develop, in Europe, the building blocks to establish the complete end-to-end capability to produce Pu-238 to help power existing Radioisotope Thermoelectric Generators (RTG) and Radioisotope Heater Units (RHUs) from the constituent elements to module production – addressing critical & non-dependencies technology needs;
• Disruptively increase the thermo-electrical conversion efficiency of dynamic Radioisotope Power Systems (RPS) with an advanced Stirling engine improving the performance of the ”state-of-practice” thermoelectric materials.
This will be achieved by
-Performing first designs and studies for selecting targets for Pu-238 generation, examine fabrication constraints and separation options
-Designing a new welding methodology for iridium encapsulation by laser welding and produce a prototype capsule.
-Designing and evaluating a robust Stirling convertor for use as an RPS
-Addressing the regulatory and safety framework for Pu-238 use in space travel
-Performing an analysis of the market potential and its segmentation for PULSAR results
PULSAR brings together a uniquely placed consortium led by TRACTEBEL, with the support of JRC, ESA and Ariane group.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101061251 |
Start date: | 01-09-2022 |
End date: | 31-10-2024 |
Total budget - Public funding: | 2 294 710,00 Euro - 1 821 166,00 Euro |
Cordis data
Original description
For space missions both Photovoltaic (PV) cells and Radioisotope Thermoelectrical Generators (RTG), fueled by Plutonium 238 (Pu-238) are used to produce electricity to power missions. From a European point of view, this has several drawbacks, as neither Pu-238 or any RTGs are produced in Europe and RTGs are very power inefficient, with a yield often of 5% of the fuel potential. This means that large amounts of fuel, and large RTGs, are needed to power missions, which increases the payloads.PULSAR is the first step on a European path to resolve these issues and take a world leading role in powering space exploration.
The PULSAR project has two overarching global ambitions. These are;
• Develop, in Europe, the building blocks to establish the complete end-to-end capability to produce Pu-238 to help power existing Radioisotope Thermoelectric Generators (RTG) and Radioisotope Heater Units (RHUs) from the constituent elements to module production – addressing critical & non-dependencies technology needs;
• Disruptively increase the thermo-electrical conversion efficiency of dynamic Radioisotope Power Systems (RPS) with an advanced Stirling engine improving the performance of the ”state-of-practice” thermoelectric materials.
This will be achieved by
-Performing first designs and studies for selecting targets for Pu-238 generation, examine fabrication constraints and separation options
-Designing a new welding methodology for iridium encapsulation by laser welding and produce a prototype capsule.
-Designing and evaluating a robust Stirling convertor for use as an RPS
-Addressing the regulatory and safety framework for Pu-238 use in space travel
-Performing an analysis of the market potential and its segmentation for PULSAR results
PULSAR brings together a uniquely placed consortium led by TRACTEBEL, with the support of JRC, ESA and Ariane group.
Status
SIGNEDCall topic
HORIZON-EURATOM-2021-NRT-01-11Update Date
01-11-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
EURATOM.1 Nuclear research and training for continuous improvement of nuclear safety, security and radiation protection, and for complementing the achievement of Horizon Europe s objectives inter alia in the context of the energy transition
EURATOM.1.1 Improve and support nuclear safety, security, safeguards, radiation protection, safe spent fuel and radioactive waste management and decommissioning, including the safe and secure use of nuclear power and of non-power applications of ionizing radiation