FREDMANS | Fuel Recycle and Experimentally Demonstrated Manufacturing of Advanced Nuclear Solutions for Safety

Summary
FREDMANS aims to increase safety and efficiency in both nuclear power production as well as the recycling of spent fuel. Changing from oxide fuel to a more fissile dense material with higher thermal conductivity can enhance both safety of operation and the economic impact of nuclear power. At the same time, a transition to a greener society with respect to both the generation and usage of electricity will drastically increase consumption of finite materials. Generation is predicted to increase by 16?20 times, in particular as electrification replaces the direct use of fossil fuels for heating and transportation. The nuclear industry can mitigate their part of the resource use through the recycling of spent nuclear fuel. This can enhance the actual power output by about 20 times. However, today there has been no full industrial demonstration of the complete recycling of nuclear fuel, although one time recycling, including of plutonium, has been used on large scale for many years e.g. in France. The model fuel is nitride fuel. It may be more energy efficient/economically advantageous to recycle not only the fissile material, but also the required isotopically enriched N-15 that is otherwise currently a costly raw material. The project sets objectives that address the overall goals of the SET plan, SNETP and EERA JPNM SRA to answer the specific aims of this call relating to the safety of advanced fuels and their recyclability, in particular nitrides highlighted in the call. We will prove that advanced fuels are a viable option for industrial use that can enhance the safety, sustainability and economics of nuclear power operation. The work packages are: Advanced Manufacturing, Recyclability, Waste Management, and Industrial Applications. Across all these WPs, the crucial aspect of safety is held in high focus.As the real safety of future nuclear systems is achieved through well educated people, an extensive Training & Education work package is included.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101060800
Start date: 01-09-2022
End date: 31-08-2026
Total budget - Public funding: 2 904 416,25 Euro - 2 503 796,00 Euro
Cordis data

Original description

FREDMANS aims to increase safety and efficiency in both nuclear power production as well as the recycling of spent fuel. Changing from oxide fuel to a more fissile dense material with higher thermal conductivity can enhance both safety of operation and the economic impact of nuclear power. At the same time, a transition to a greener society with respect to both the generation and usage of electricity will drastically increase consumption of finite materials. Generation is predicted to increase by 16?20 times, in particular as electrification replaces the direct use of fossil fuels for heating and transportation. The nuclear industry can mitigate their part of the resource use through the recycling of spent nuclear fuel. This can enhance the actual power output by about 20 times. However, today there has been no full industrial demonstration of the complete recycling of nuclear fuel, although one time recycling, including of plutonium, has been used on large scale for many years e.g. in France.
The model fuel is nitride fuel. It may be more energy efficient/economically advantageous to recycle not only the fissile material, but also the required isotopically enriched N-15 that is otherwise currently a costly raw material.
The project sets objectives that address the overall goals of the SET plan, SNETP and EERA JPNM SRA to answer the specific aims of this call relating to the safety of advanced fuels and their recyclability, in particular nitrides highlighted in the call. We will prove that advanced fuels are a viable option for industrial use that can enhance the safety, sustainability and economics of nuclear power operation.
The work packages are: Advanced Manufacturing, Recyclability, Waste Management, and Industrial Applications. Across all these WPs, the crucial aspect of safety is held in high focus.As the real safety of future nuclear systems is achieved through well educated people, an extensive Training & Education work package is included.

Status

SIGNED

Call topic

HORIZON-EURATOM-2021-NRT-01-02

Update Date

01-11-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
EURATOM.1 Nuclear research and training for continuous improvement of nuclear safety, security and radiation protection, and for complementing the achievement of Horizon Europe s objectives inter alia in the context of the energy transition
EURATOM.1.1 Improve and support nuclear safety, security, safeguards, radiation protection, safe spent fuel and radioactive waste management and decommissioning, including the safe and secure use of nuclear power and of non-power applications of ionizing radiation
EURATOM.1.1.1 Nuclear safety
HORIZON-EURATOM-2021-NRT-01
HORIZON-EURATOM-2021-NRT-01-02 Safety of advanced and innovative nuclear designs and fuels
EURATOM2027 Euratom Research and Training Programme (EURATOM)
HORIZON-EURATOM-2021-NRT-01
HORIZON-EURATOM-2021-NRT-01-02 Safety of advanced and innovative nuclear designs and fuels