Summary
The Fukushima Daiichi event in 2011 demonstrated the need for enhanced nuclear energy safety, becoming a major driving force for global investments in accident-tolerant fuels (ATFs) over the past decade. Candidate ATF cladding material concepts that are being developed in replacement of the standard zirconium-based alloy (zircaloy) fuel cladding materials used in light water reactors (LWRs) must outperform commercial zircaloys under nominal operation, high-temperature transient (1200°C) conditions. SiC/SiC composites are a rather revolutionary ATF cladding material concept exhibiting inherent refractoriness, pseudo-ductility, and a lack of accelerated oxidation during a loss-of-coolant scenario. Due to their unique potential in meeting the stringent property requirements of the ATF cladding application, SiC/SiC composites have already claimed large global investments. Despite these investments, all state-of-the-art variants of the SiC/SiC composite cladding material concept must still overcome inherent shortcomings prior to their perspective deployment. Two important weaknesses are their inadequate compatibility with the coolant (water and steam) and the early (
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101059511 |
Start date: | 01-09-2022 |
End date: | 28-02-2026 |
Total budget - Public funding: | 3 073 343,75 Euro - 2 630 843,00 Euro |
Cordis data
Original description
The Fukushima Daiichi event in 2011 demonstrated the need for enhanced nuclear energy safety, becoming a major driving force for global investments in accident-tolerant fuels (ATFs) over the past decade. Candidate ATF cladding material concepts that are being developed in replacement of the standard zirconium-based alloy (zircaloy) fuel cladding materials used in light water reactors (LWRs) must outperform commercial zircaloys under nominal operation, high-temperature transient (1200°C) conditions. SiC/SiC composites are a rather revolutionary ATF cladding material concept exhibiting inherent refractoriness, pseudo-ductility, and a lack of accelerated oxidation during a loss-of-coolant scenario. Due to their unique potential in meeting the stringent property requirements of the ATF cladding application, SiC/SiC composites have already claimed large global investments. Despite these investments, all state-of-the-art variants of the SiC/SiC composite cladding material concept must still overcome inherent shortcomings prior to their perspective deployment. Two important weaknesses are their inadequate compatibility with the coolant (water and steam) and the early (Status
SIGNEDCall topic
HORIZON-EURATOM-2021-NRT-01-01Update Date
01-11-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
EURATOM.1 Nuclear research and training for continuous improvement of nuclear safety, security and radiation protection, and for complementing the achievement of Horizon Europe s objectives inter alia in the context of the energy transition
EURATOM.1.1 Improve and support nuclear safety, security, safeguards, radiation protection, safe spent fuel and radioactive waste management and decommissioning, including the safe and secure use of nuclear power and of non-power applications of ionizing radiation